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Dr. Robb Rowley is an Internal Medicine Physician and is the newly
appointed Program Director for the National Human Genome Research
Institute (NHGRI) Electronic Medical Records and Genomics (eMERGE)
Network. The national Network combines DNA biorepositories with electronic
medical record (EMR) systems for large scale, high-throughput genetic
research in support of implementing genomic medicine.

Prior to starting at NHGRI, he spent thirteen years in private practice and
hospital management, where he provided clinical assessments and medical
care for adult diseases influenced by genetically influenced conditions to
improve patient risk stratification and individualize treatments. Dr. Rowley
previously served in the United States Air Force Surgeon General's Office in
Washington DC as the Chief of Medical Bioinformatics and Genomics. During
this time, he established genomic policy and conducted genomic research for
the United States Air Force. Dr. Rowley has also been instrumental in
establishing national and international plans and policies for incorporating
genomics into biosurveillance systems and biotechnology for the Department
of Defense (DoD) and North American Trade Organization (NATO). Dr.
Rowley has experience with managing multiple Food and Drug Administration
(FDA) clinical trials, along with presenting original research at international
scientific and medical meetings.



Disclosures

= Dr. Rowley has no relevant financial or non-financial relationships to
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Learning Objectives

At the end of the presentation, participants will be able to:

1. Describe genomic medicine opportunities and
challenges.

2. Explain how genomics can be used for clinical care:
assessing risk, pharmacogenomics, undiagnosed
disease, and somatic variation.

3. Summarize emerging concepts in genomics and how
clinicians are needed for implementation.
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DoD demonstrates value of
genomic medicine
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Global Trajectories of tt

Symptoms can range from mild to severe illness, and appear 2-14 days after you
are exposed to the virus that causes COVID-19.

Seek medical care immediately if someone has
Emergency Warning Signs of COVID-19

: N "" R 8 \ Q’ ] - i

it % S aﬂo?cé exg!nds— (¢ o0 [ : i @%g\ W
sic-training-course-io-faglis-on- -« . https://Wikipedia.com 1e-slave-trade .
readiness-lethality-1.555371 https://www.cdc.gov/coronavirus/2019-ncov/downloads/COVID19-symptoms.pdf Source-David-Eltis-and-David_fig3_282775196

* In 1999 basic trainees had “flu-like” symptoms with loss of
DoD at the Adenovirus vaccine
forefront of * Recognized that many pathogens present with these symptoms
Genomic « Adenovirus, Influenza, Anthrax, SARS, coronavirus...
Medicine « Understood the limitations of current approach of suspect and test
 Limited ability to monitor and track pathogens
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Tackling
Challenge

2001 DoD started the
epidemic outbreak
surveillance program

Developed and validated a
microarray to identify 100’s of
strains of pathogens at the
sequence level in a single test

Allowed the tracking and
monitoring of pathogens by
digitizing biology

Conducted a genomic
medicine clinical trial

Parainfluanza vrus

Rhimavrus

Respiratory syncytal virus

West Nile vwrus

Caronavrns

C. pnewmnonae

8. anthracis
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Tackling Challenge

Table 1. Pathogens identified for 424 matched specimens-
overall microarray vs. reference methods.

—_

0
0
0
0
8

. pneumoniae 40 38 1 .

0
3
. pyogenes 0
0

Negative

Note: *Coronaviruses were identified through CAP-certified PCR method, Ref®
reference assays-culture and/or RT-PCR/PCR positive.

doi:10.1371/journal.pone.0000419.t001

(Lin, et al., 2007)
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What is an appropriate threshold for positivity?

How do we manage the improved resolution
of the outbreak for clinical decisions?

Wuhan-Hu-1/2019

What constitutes significant change in the
genome?

How do we manage the rapid identification
and dissemination of information?
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Assessing Risk
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Rationale behind genetics for risk

General Population of
Women

Y e e e e

22998

\‘ o,
.l)" —i)" —i)" -L" —=I)f Screening

Routine
Breast
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Rationale behind genetics for risk

General Population of

Women High Risk
? ? ? ? ? Screening
-.’_.a‘r.ia‘r.ia‘v.ia‘!-.’_.a‘r
| B N A
_THE
ANE:FEECI:_TINA
Jiwww.p

agiganti/angelina-jolie/
(Frost, 2011)
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Monogenic Risk

Cancer Statistics, 2021

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer Statistics, 2021. CA: a
cancer journal for clinicians, 71(1), 7-33. https://doi.org/10.3322/caac.21654

* Found in ~32% of the BIRTHTO 49 507059 507069 70 AND OLDER ‘
general population e -
129(1n8)

Female 35(1in28)
¢ Ave I’age r|Sk S|g N |f|Ca ntly From: Risks of Breast, Ovarian, and Contralateral Breast Cancer for
d Iﬁe rent than mOHOgen |C BRCA1 and BRCA2 Mutation Carriers
COnfeI’I’ed FISk e - g . JAMA. ?01?;317(23):2402-2416. doi:10.1001/jama.?017.7112
¢ 12.9% risk of a woman
in the general
population
* ~70% risk in woman T :,
with Breast Cancer L 0
(BRCA) 1 variant

BRCAI 53 340
BRCA2 30 160

NIH
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Using an Individual Patient’s Genomic Variants in
their Clinical Care— Germline Cancer Mutations

Syndrome

[Hereditary breast an
ovarian cancer

!

Li-Fraumeni

Cowden

| HNPCC (Lynch) |

Von Hippel-Lindau

Retinoblastoma

Hereditary
paraganglioma

Multiple endocrine
neoplasias

(Garber, 2005)

Gene
BRCA1/2
TP583
PTEN

MLH1, MSH2,
MSH6

VHL

RB1

SDHD, SDHC,
SDHB

MEN1, RET

Tumors

Breast, ovarian, prostate,
pancreatic, other cancers

Multiple

Breast, thyroid, endometrial
other cancers

Colon, endometrial, ovarian,
other cancers

Hemangioblastomas, renal
cell, other cancers

Retinoblastoma

Paraganglioma,
pheochromocytoma

Multiple

Teri Manolio



Polygenic Risk Scores (PRS)
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Clinical Factors

High

Moderate

>J=

Average

NIH Low

NHGRI

How do we improve on the standard of
care for risk stratifying patients?
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Incorporating a Genetic Risk Score Into Coronary Heart
Disease Risk Estimates
Effect on Low-Density Lipoprotein Cholesterol Levels (the MI-GENES

Clinical Trial)

[ftikhar J. Kullo, MD:; Hayan Jouni, MD; Erin E. Austin, PhD; Sherry-Ann Brown, MD, PhD;
Teresa M. Kruisselbrink, GCS; Iyad N. Isseh, MBBS; Raad A. Haddad, MBBS:
Tariq S. Marroush, MD; Khader Shameer, PhD; Janet E. Olson, PhD; Ulrich Broeckel, MD:;
Robert C. Green, MD, MPH; Daniel J. Schaid, PhD; Victor M. Montori, MD; Kent R. Bailey, PhD

203 middle-aged adults at intermediate risk

* Randomized to receive 10-yr coronary
Heart Disease (CHD) risk estimates from
clinical risk alone (CRS) or clinical risk +
genetic risk score (+GRS)

e Compared Low Density Lipoprotein
Cholesterol (LDL-C) at 6 mos

(Kullo, 2016)

o  Any differences due to diet, activity, statins

18



LDL-C Lowering Iin Patients Given Clinical and
Genomic Risk Information

“...Disclosure of CHD risk estimates that incorporated genetic risk information led to lower LDL-C
levels than disclosure of CHD risk based on conventional risk factors alone.”

\l
A\
0..-\\ \
“\\ CRS
\
AN {: Low GRS
»==" +GRS
« High GRS

LDL-C Levels (mg/dl)

NIH) (Kullo, 2016) -9 T .e.

NHGRI
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Applying Risk
p p y I n g I s Association of Lifestyle and Genetic Risk With Incidence of Dementia

JAM/ Risk of Coronary Artery Disease Conferred by Low-Density Lipoprotein Cholesterol
Depends on Polygenic Background
. F = Alessandro Bolli. Circulation. Risk of Coronary Artery Disease Conferred by Low-Density Lipoprotein Cholesterol Depends on Polygenic
® U S | n g I | I O n Og e n | C rl S k Background, Volume: 143, Issue: 14, Pages: 1452-1454, DOI: (10.1161/CIRCULATIONAHA.120.051843)
Subgroup o - polygenic background modifies penetrance of monogenic variants for tier 1

with clinical factors lowgenst =P g omic conditions

Favorabl Fahed, A.C., Wang, M., Homburger, J.R. et al. Polygenic background modifies penetrance
of monogenic variants for tier 1 genomic conditions. Nat Commun 11, 3635 (2020).

- CO mbine P RS with Unfavor: https://doi.org/10.1038/s41467-020-17374-3

Intermec

Intermedic 1ot PR 8 '
a . N of 6432 N of 6420 . ]
= O Favorabl FH variant Polygenic score Cases Controls Adjusted odds ratio 95% CI
C I n ICa a Cto rS Intermec Garrier High 22 260 (0.99: 650y

Carrier Intermediate 14 2.60 (0.99; 6.79)
U f . Carrier Low 6 1.30 (0.39; 4.32)
nravore Noncarrier High 2348 2.28 (2.10; 2.48)

. Noncarrier Intermediate 3400 Reference
High genet Noncarrier Low 641 0.53 (0.47; 0.59)

 Combine monogenic =ik
and PRS to " {E——
understand risk

)

Familial hypercholesterolemia variant
Carriers
Noncarriers

Average risk 41%

" Average risk 13%

QOdds ratio for coronary artery disease

(o}

Probability of coronary artery disease by age 75 (%) ©

20 40 60 80 20 40 60 80
Percentile of polygenic score Percentile of polygenic score

(Bolli et al., 2021)
(Lourida, 2079)

NIH), (Fahed et al., 2020) 20
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Risk Stratifying

 Highly penetrant low
prevalence conditions for
primary prevention

 Highly prevalent low
penetrance conditions

» Shared decision making
to help decide how to
manage risk

S SRR B TR

Annual
mammograms

(Esserman, et al., 2017)

R TG RN RN

A personalized
approach




Polygenic Risk Scores (PRS)

Polygenes, Risk Prediction, and Targeted
Prevention of Breast Cancer

Paul D.P. Ph
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. Prostate Cancer validatic

Polygenic risk and the development and course of asthma:
an analysis of data from a four-decade longitudinal study

Daniel W Belsky, Malcalm | /3 Available online at www.sciencedirect.com Current Opinion in
Richie Poulton, Avshalom | ScienceDil'eCf GenehCS
4 & Development

Summary ELSL\"iEl;
Background Genome

asthma. To integrate. Genomic risk prediction of complex human disease
genetic discoveries e g jts clinical application -

Gad Abrahz . N
—____ Genetic assessment of age-associated

- Breast Cancer Alzheinm Genetics

) American Coleg of Medical Genetis and Genomics ORIGINAL RESEARCH ARTICLE | inMedicine
Open

» Coronary D|Sease Rahul S. Desikil
 Alzheimer Disease
* Bone Density

J. Cabral®. L. A Implications of polygenic risk-stratified screening for

prostate cancer on overdiagnosis
Pharaoh et al., 2008)

(
(Belsky et al., 2013)) Nora Pashayan, MD, PhD', Stephen W. Duffy, MSc?, David E. Neal, MBBS, FRCS?,
(Abraham & Inouye, 2015) Freddie C. Hamdy, MD, FRCS%, Jenny L. Donovan, PhD®, Richard M. Martin, MBBS, PhD>,
(Desikan et al, 2017)

(Pashayan, 2015)
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eMERGE

Prospective clinical study
assessing genome informed
risk assessments for ~10
conditions

Provide management
recommendations

Participants will be followed
for 2-3 years

Assess impact has on
clinician and patient behavior

polygenic
determinants
family monogenic
history determinants
TN
clinical <~5/ social
determinants \ , determinants

l:
/
-
-
’
’
-

Genomic Risk Assessment

23



Pharmacogenomics
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Beginnings of Genomic Medicine

Effects of a selective inhibitor of the Abl tyrosine
kinase on the growth of Bcr-Abl positive cells

(Druker et al. 2001)
(Relling et al. 2011)

Human RBC TPMT
298 Unrelated Adults

g TPMTH/TPMTH
Mercaptopurine Pharmacogenetics: g /

Clinical Pharmacogenetlcs Implementatlon
Consortium Guidelines for Thiopurine
Methyltransferase Genotype and Thiopurine
Dosing

MV Relling, EE Gardner!, W] Sandborn?, K Schmiegelow™*, C-H Pui®, SW Yee®, CM Stein’,
M Carrillo8, WE Evans! and TE Klein®

Teri Manolio




TPMT (thiopurine methyltransferase)

* 6-mercaptopurine, 6-thioguanine, and azathioprine
used to treat acute leukemia, autoimmune disorders,
iInflammatory bowel disease, transplant rejection

» Relatively narrow therapeutic index, major toxicity is
life-threatening myelosuppression

* Metabolized by S-methylation catalyzed by the
thiopurine methyltransferase enzyme

« TPMT activity levels controlled by a common genetic
polymorphism; 89% homozygous for high activity, y Vx
11% heterozygous (intermediate), 0.3% low //'\ V&

NIH) /\ R "
NHGRI | "L \ ‘
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Common TPII_{IT Variants

mal” activity

lete absence

e N \
- g‘hap\owp;l

ild reduction

" ' old reduction

m) (Weinshilboum, 2001) 28
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SLCO1B1 and Statin Myopathy

Clinical Pharmacogenetics Implementation
Consortium Guidelines for Cytochrome

P45 Clinical Pharmacogenetics Implementation ) |mp|ementat|0n
and Consortium Guidelines for CYP2C9 and VKORCT K (‘O 7 B 7

sascorl @GN Clinical Pharmacogenetics Implementation
PV Red a0 Consortium (CPIC) Guidelines for Codeine Iy

MTML
Thet
RAWIRE -y Clinical Pharmacogenetics Implementation & RM Krauss’,

F
DM Rode Consortium Guidelines for HLA-B Genotype and delin<!3 and M Niemil4

et APaf Clinical Pharmacogenetics Implementation s
Marl . . . X
*M Consortium Guidelines for Human Leukocyte |

Anti Clinical Pharmacogenetics Implementation
wsHers: Consortium Guideline for CYP2D6 and

and MT)

CYP2 Clinical Pharmacogenetics Implementation
Antic Consortium (CPIC) Guideline for CYP2D6 and

Wike otal, 2281112)) K i’ CYP Clinical Pharmacogenetics Implementation
: Ser(Consortium (CPIC) Guidelines for CYP3A5

Johnson et al., 2011)

(

E

(Crews et al., 2012) < Hic

(Miontin ot al.2012) nggthenotype and Tacrolimus Dosing
(
(
(
(

Hershfield et al., 201 3) KA Birdwell'?, B Decker’, JM Barbarino®, JF Peterson™, CM Stein™, °, W Sadee’, D \\"ang—, AA Vinks®?,

Hicks et al., 201 3) Y He'’, JJ Swen'!, JS Leeder'?, RHN van Schaik'®, KE Thummel'*, TE Klein®*, KE Caudle'® and

L ac 1661(‘
Hicks et al., 2015) IAM MacP}

Birdwell et al., 2015)
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Table 4

Drug

Marker?

Result

Clinical

interpretation

Pharmacogenomic markers for SJS/TEN in clinical practice

Clinical

recommendation

High-risk
ethnicities?

Additional remarks for positive carriers

Carbamazepine

HIA-B*15:02

Positve

Increased risk for

SJS/TEN

Do notuse
carbamazepine or
oxcarbazepine

Negative

Normal risk for

SIS/TEN

Use carbamazepine
or oxcarbazepine

Han Chinese,
Thai,
Malaysian,
Indian,
Singaporean,
and Vietnamese

If the patient is carbamazepine or oxcarbazepine
naive, do not use carbamazepine or
oxcarbazepine, respectively.

If the patient has previously used carbamazepine
or oxcarbazepine for longer than 3 months
without a cutaneous adverse drug reaction,
continuously consider using carbamazepine or
oxcarbazepine.

HIA-A*31:01

Positve

Increased risk for
SIS/ TEN

Do notuse
carbamazepine or
oxcarbazepine

Negative

Normal risk for

SIS/TEN

Use carbamazepine

or oxcarbazepine

Japanese,
Korean, and

FEuropean

If the patent is carbamazepine or oxcarbazepine
naive, do not use carbamazepine or
oxcarbazepine, respectively.

If the patient has previously used carbamazepine
or oxcarbazepine for longer than 3 months
without a cutaneous adverse drug reaction,
continuously consider using carbamazepine or
oxcarbazepine.

Allopurinol

HI.A-B*58:01

Positve

Increased risk for
SJS/TEN,
DRESS, and
MPE

Do notuse
allopurinol

Normal risk for
SJS/TEN,
DRESS, and
MPE

Use allopurinol

Asian and
Caucasian

If the patdent is allopurinol naive, do not use
allopurinol.

If the patient has previously used allopurinol for
longer than 3 months without a cutaneous
adverse drug reaction, continuously consider
using allopurinol.

A starting dose of less than 200 mg should be
considered.

Screening should be considered for elderly
patients and patients with renal abnormal
functon.

Abbreviations: DRESS, drug reaction with eosinophilia and systemic symptoms; HILA, human leukocyte antigen; MPE, maculopapular exanthema; SJS, Stevens—Johnson syndrome; TEN, toxic

epidermal necrolysis.

*These variants confer risk in both the heterozygous and homozygous states.

bThe risk alleles are common in these ethnicites.

NIH)

(Sukasem, 2018)




Undiagnosed
disease
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Overview

The NIH Undiagnosed Dised
that focuses on the most puz
Bethesda, Md. It was organizd
the NIH Office of Rare Diseass
research centers and institutes
oncology, dermatology, dentis

A longstanding medical conditi
interest to this clinical researc
number will be invited to p
general, it takes 8 to 12 week

nose
i

O Overview




1 Seven clinical sites, a coordinating center, two DNA sequencing cores,
Undlagnosed ‘ a metabolomics core, a model organisms screening center,
Diseases Network

and a central biorepository

Boston Children'’s Hospital,
Brigham and Women's Hospital,
Massachusetts General Hospital

g ~»,.:3 Pacific Northwest National Laboratory
w/ Oregon Health & Science University

National Institutes
of Health

Duke University
w/ Columbia
University

Vanderbilt University
Medical Center

Nashville, TN
\
HudsonAlpha Institute

for Biotechnology
w/ lllumina

Baylor College of Medicine /7 7.}~ }“
w/ Univesity of Oregon @ 4

Huntsville, AL

Houston, TX ¥ N | o~
. {: Clinical site k.) Central Biorepository

\ié‘w Coordinating center @ Model Organisms Screening Center

\(} DNA sequencing core Metabolomics Core

Objectives:
Improve the level of diagnosis and care for patients with undiagnosed diseases

Facilitate research into the etiology of undiagnosed diseases g
Create an integrated and collaborative research community to identify improved @,
NI options for optimal patient management =

NHGRI Teri Manolio



Undiagnosed http://udnconnect.
DiseasegJ Network APPLY @4 . org/apply/

Applications Applications Applications Participants Participants
Received Under Review Accepted Evaluated Diagnosed

Sequencing
(exome and genome)

Metabolomics

(fly and fish)

NIH ) b Diagnoses

NHGRI




Genetic Diagnosis in Undiagnosed Disease
Network UDN . | Genetics 382 evaluated patients

(gﬁash, ot al., 2019) » 132 received diagnosis (35%)

A agnosing individuals who are exome megative. * 98 diagnoses made by
- sequencing (74%)

¢ 21% led to recommended
changes in therapy

(Splinter et al., 2018) _ * 37% led to changes in
Effect of Genetic Diagnosis on Patients diagnostic testing

with Previously Undiagnosed Disease _ »
» 36% led to variant-specific

The NEW ENGLAND JOURNAL of MEDICINE

K. Splinter, D.R. Adams, C.A. Bacino, H.J. Bellen, J.A. Bernstein,

A.M. Cheatle-Jarvela, C.M. Eng, C. Esteves, W.A. Gahl, R. Hamid, H.]. Jacob, genetIC cou nSellng

L Undiagnosed

B. Kikani, D.M. Koeller, I.S. Kohane, B.H. Lee, J. Loscalzo, X. Luo, A.T. McCray,
T.O. Metz, J.J. Mulvihill, S.F. Nelson, C.G.S. Palmer, J.A. Phillips 11, L. Pick,
J.H. Postlethwait, C. Reuter, V. Shashi, D.A. Sweetser, CJ. Tifft, N.M. Walley,
M.F. Wangler, M. Westerfield, M.T. Wheeler, A.L. Wise, E.A. Worthey,
S. Yamamoto, and E.A. Ashley, for the Undiagnosed Diseases Network*

Diseases Network

35 Solving Medical Mysteries Through Team Science

NHGRI



Undiagnosed Diseases Network (UDN)

- Molecular Genetics & Genomic Medicine
CLINICAL REPORT WILEY

TABLE 1 WGS identified a previously reported pathogenic variant in maternal alkeke and a novel deep-intronic variant in paternal alke ke

r SIFT
Whole £2€nol Proband Mother Father § 1KG AF EVS AFExAC  Polyphen
Gene Position Change Effect Zygosity Zygosity Zygosity AF gnomAD AF GERP Condition
-
leadlng tO W] IGHMBP2  chrll: T—Ccl70T>C Missense | @O Y 00 None 0.002 Charcot-Marie-Tooth
68702864 pLeuS77Pro | \§ 1 discase, axonal, type 28
phenotype w 491 (AR)

IGHMBP2  chrll: C—=A
68697719 0>85

c.1235+894C>A  Intron [ le] OC » N NA Charcot-Marie-Tooth
Cryptic Acceptor splice k

discase, axonal, type 28
site (AR)
impact

) In Immun v ,
IVS8 Cryptic Acceptor
:ause an autc C.1235+894C>A

1 616155]. a
d with CMT,

(el <l 1 o Exon 8
!7Ilr‘.?CCX:I:CC3(;(;:3.:'\.1\(:1\'1':|;f\':'.'l‘:'.'1‘;:4\[::\"'.’]\:('4;':1'
Pseudo Exon
AGAAGATGTGC = TOCTG * 182 bp

AGGGGCEG




Newborn Sequencing in Genomic Medicine
and Public Health (NSIGHT) Program

* Robert Green, Alan Beggs, Brigham and Women'’s Hospital
NICU and healthy newborns, 240 exomes, Newborn Screen
(NBS) vs. NBS + genomic NBS

«  Stephen Kingsmore, Rady Children’s Hospital

Acutely Il Newborns

» Jennifer Puck, Barbara Koenig, University
of California San Francisco (UCSF)
Sequencing of Newborn Blood Spot DNA to
Improve and Expand Newborn Screening

« Cynthia Powell, Jonathan Berg, University
of North Carolina (UNC) North Carolina
NIH) Newborn Exome Sequencing for Universal
Screening




High Yield of Whole Genome
Sequencing in Critically lll Infants

Whole-genome sequencing for identification of Mendelian
disorders in critically ill infants: a retrospective analysis of

diagnostic and clinical findings

Laurel K Willig, Josh E Petrikin, Laurie D Smith, Carol ] Saunders, Isabelle Thiffault, Neil A Miller, Sarah E Soden, Julie A Cakici, Suzanne M Herd,
Greyson Twist, Aaron Noll, Mitchell Creed, PatriaM Alba, Shannon L Carpenter, Mark A Clements, Ryan T Fischer, | Allyson Hays, Howard Kilbride,

Ryan ] McDonough, Jamie L Rosterman, Sarah L Tsai, Lee Zellmer, Emily G Farrow, Stephen F Kingsmore

« 35 infants < 4mo age in neonatal
intensive care unit Neonatal/Pediatric
Intensive Care Unit (NICU/PICU)

« 26 hour sequencing, infant + parents

| 20 (57%) diagnosed with sequencing,
3 (9%) with standard genetics

B g 2015 - 65% of diagnoses had immediate
Impact on clinical management




Yield and Speed of Genome Sequencing
Diagnosis in Critically lll Infants

WGS + Standard Testing WGS + Standard Testing

Standard Testing Standard Testing

Proportion Receiving Dx

>
(]
o
£
=
@
O
@
o
c
9
=
e
a
o
-
o

0 80 160 240 320 400 480 0 80 160 240 320 400
Time to Dx (Days) Proband Age (Days)

* 65 infants < 4moth age in NICU/PICU, trios
« 31% diagnoses in “cases,” 3% “controls”
NIH) . [Time to diagnosis: 13 days [1-84] vs. 107 days [21-429]

NHGRI

]Teri Manolio




Exome Seguencing and Targeted Iherap
G CHI1 heterozygous mutation identified by whole-exome
sequencing as a treatable condition in a patient presenting
with progressive spastic paraplegia

(Fan et. al., 2014)

NIH

NHGRI Teri Manolio




Carrier Testing and Care of Newborns

ARTICLE

Preconceptior
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Research to Clinic and Back Again

Mother

Diagram and Clinical Appearance of Subgaleal Hemorrhage

Teri Manolio




Somatic Variation
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Somatic vs.
Germline variation

* Germline genetic variants are
the changes that can impact
generations

« Somatic genetic variants are the
changes that occur starting after
conception

 How do these changes affect
health and disease?

Germ line (Germ cells)

Somatic
cells

/_\\ Q Jim Smith’s sperm
I |

Germ cells
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Somatic clonal expansions in normal human tissues.

Normal cells .
~ Brain—g
Pituitary—®

£

Salivary gland—g

Thyroid—® / Esophagus{ ’
@~ Lung { '/

Liver®
Macroscopic Heart———— Y B Q?drr?g i glans
clonal expansion Stomadh .
@ Blood vessel
Bladder
Prostate
Testis
® ————— Skin (non-sun-
Ovary— exposed)

Uterus
Cervix ® ——Muscle

Vagina

intestine

_ . Adipose
Somatic mutation : tissue : ‘
: Skin (sun-{ '/

X Nerve— exposed)

(Yizhak, 2019)
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Fig. 2 Somatic clonal expansion in normal tissues
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Using an Individual Patient’s Genomic Variants in
their Clinical Care — Somatic Cancer Mutations

Agent Target(s)
(BAe\y:sc;iiﬁl)Jmab VEGF ligand
Ceritinib (Zykadia) ALK

Cetuximab (Erbitux) (EHGEI;R1 JERBB1)
Crizotinib (Xalkori) ALK, MET, ROS1
Erlotinib (Tarceva) (EI_,GEIE /ERBB1)

[Imatinib (Gleevec) ] KIT, PDGFR, ABL

Trastuzumab HER?2 (ERBB2/neu)
(Herceptin)

Vemurafenib

(Zelboraf) SRAR

MyCancerGenome.org

Indications

Colorectal cancer
Glioblastoma, others...

Non-small cell lung cancer
Colorectal cancer

Non-small cell lung cancer
Non-small cell lung cancer

Philadelphia chromosome-
positive ALL and CML

Breast cancer (HER2+)
Gastric cancer (HER2+)

Melanoma (with BRAF
V600E mutation)
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Microsatellite
polymorphisms

Retrotransposon
insertions

Somatic variation

Single-nucleotide
mutations

[ | Copy-number variants
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Celllineage &, —  Somaticrmutatons Somatic mutations accumulate over the

e o lifespan and expand clonally
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development, Amyotrophic Lateral
Sclerosis (ALS), Systemic lupus

G‘Q erythematosus (SLE), Multiple Sclerosis
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@ aging pathologies

N
Mosaic patchwork of somatic mutations / [ =




From: Association of Mutations Contributing to Clonal Hematopoiesis With Prognosis in Chronic Ischemic

Heart Failure

(Dorsheimer, 2019)
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Iﬂ Overall survival of patients with DNMT3A or TET2 mutations M Event-free survival of patients with DNMT3A or TET2 mutations
1.0 1.0+

0.8 No mutation
No mutation

0.6
TET2/DNMT3A

Survival

04 TET2/DNMT3A

Survival Free of Death
or Heart Failure Hospitalization

P (log rank) =.003 P (log rank) =.001
1095 1460 1825 2190 730 1095 1460 1825 2190
Follow-up, d Follow-up, d
No. at risk No. at risk
TET2/DNMT3A 21 18 15 11 TET2/DNMT3A 21 9
No mutation 162 146 134 116 No mutation 162
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enomic Medic

PERSPECITIVE

* |dentify risk

:.On the Threshold

. omic medicine
* Prevent disease
from

. . 1
Eric D. Green', M

mprove diagnostics

There has bee m p rove tre at m e n tS sequence of the human genome was published.
Opportunities nted, as advances in genomics are hamessed to
obtain robust

contributions

n of the human genome and about the genetic
describe the p Nncrease aCcess

vision for the future of genomics research and

ince the end of the Human Genome Project (HGP) in 2003 and the

publication of a reference human genome sequence'?, genomics has

become a mainstay of biomedical research. The scientific commu
nity’s foresight in launching this ambitious project” is evident in the broad
range of scientific advances that the HGP has enabled, as shown in Fig, 1

quickly. Although genomics has already begun to improve diagnostics
and treatments in a few circumstances, pmti)und improvements in the
effectiveness of healthcare cannot realistically be expected for many years
(Fig 2). Achieving such progress will depend not only on research, but

also on new policies, practices and other developments. We have illu | ,
(see rallfold). Optimism about the potential contributions of genomics for  strated the kinds of achievements that can be anticipated with a few e
improving human health has been fuelled by new insights about cancer*”, examples (Box 2) where a confluence of need and opportunities should '
NHGRI (Green, 2011)
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https://www.clinicalgenome.org/

Get Started About Us~ Curation Activitiess Working Groups~ Expert Panels Documents & Annoucements Tools Q

. l : .. .. Il . it N .
ClinGen - Clinical Genome Resource : P % 3

R
ClinGen is a National Institutes of Health (NIH)-funded resource dedicated to building an authoritative central R "-.'._..'.-’
resource that defines the clinical relevance of genes and variants for use in precision medicine and research. G [ G

Clinical Genome Resource

Goals

« Share genomic and phenotypic data among clinicians, researchers, and patients through
centralized and federated databases for clinical and research use.

« Develop and implement standards to support clinical annotation and interpretation of genes
and variants.

 Develop data standards, software infrastructure and computational approaches to enable
curation at scale and facilitate integration into healthcare delivery.

 Enhance and accelerate expert review of the clinical relevance of genes and variants.
« Disseminate and integrate ClinGen knowledge and resources to the broader comgawnityo




NIH

NHGRI

What is the Clinical Genome Resource
(ClinGen)?

Laboratories Researchers

Is this
information
actionable?

Is this gene
associated with

a disease”?
Clinical Validity Pathogenicity Clinical Utility

Is this variant
causative?
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American College of Medical Genetics and Genomics (ACMG) Evidence

Benign

Framework for Variant Interpretation
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Range of Clinical Actionability?

Actionable  Actionable |
(liberal) (ideal?) Actionable

(conservative)
Clinical Validity \

Clinical Utility

NIH), (Ramos, 2014)
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Clinical Actionability

Develop clear and robust criteria to guide
decisions regarding actionable secondary findings:

1. Severity

2. Likelihood of disease

3. Efficacy of intervention }Level of Evidence
4. Nature of intervention

ClmGen

NIH), (Hunter, 2016)
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Topics of ClinGen Variant and Gene Curation Expert Panels

« ACADVL * Epilepsy « KCNQ1

« Aminoacidopathy « Familial Hypercholesterolemia « Long QT Syndrome

« Arrhythmogenic RV » Familial Thoracic Aortic - Lysosomal Storage Disorders
Cardiomyopathy Aneurysm and Dissection

* Malignant Hyperthermizg

« Brain Malformations * Fatty Acid Oxidation Disorders

« Breast/Ovarian Cancer * FBN1 we can
yement 5O

\evel of invol

e Cardicasiig | Cura u e abo : p——l
0 i * Peroxisomal Disorders

* Phenylketonuria

 Hereditary Breast, Ovarian and

Syndr Pancreatic Cancer - Platelet Disorder
- Coagulation Factor Deficiency | Hereditary Cancer * PTEN
» Colon Cancer « Hereditary Hemorrhagic * RASopathy
- Congenital Myopathies Telangiectasia - Rett and Angelman-like Disorders
« DICER1 and miRNA- * Hypertrophic Cardiomyopathy . TP53

ﬁiocessing * Intellectual Disability and Autism .« \/H[
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ClinGen Work Group and Expert Panel representation
includes investigators from 25 countries
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Map of ClinVar Submitters

785,694 unique variants from 1,577 submitters across

76 countries
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Ehewan 2o

Diversity and Genomics

2 5 1. Individuals

European

~Non-European,
Non-Asian

East Asian ’
9% Other

L

Certain drugs may be less effective, or even unsafe, in some populations because of genetic differences.

Genomics is
failing on diversity

Grt. Mid. Eastern - 0.04%
Native American - 0.03%
Oceanian - 0.02%

NIH
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Distributions Across Populations: Information About
Clinically Relevant Sites in gnomAD (>225K Observations)

African Ashkenazi East Asian European Finnmish Latino South Asian
Jewish

® Average number of observations per site l'otal allele counts l'otal private alleles

m) (Popejoy, 2018)
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Frequency of Genetic Variants Misassociated with
Cardiomyopathy in Black and White Americans

B White Americans B Black Americans
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SCYACLCEVEVE

* Genomics offers a way to personalize care but
need to understand long-term outcomes

» Genomics can help with risk assessment, avoid
adverse drug events, diagnose undiagnosed
disease, and improve efficacy

 Clinicians are needed in implementation research
projects to help understand impact
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