

Application of Genetics in Clinical Practice

Clesson Turner, M.D.

April 22, 2021

0925-1025 ET

Presenter

Clesson Turner, M.D.

Clinical Genetics and Clinical Molecular Genetics

Associate Professor of Pediatrics

Interim Director, Precision Medicine Initiative for Military Education and Research

Department of Pediatrics, Uniform Services University of the Health Sciences and Walter Reed National Military Medical Center

Clesson Turner, M.D.

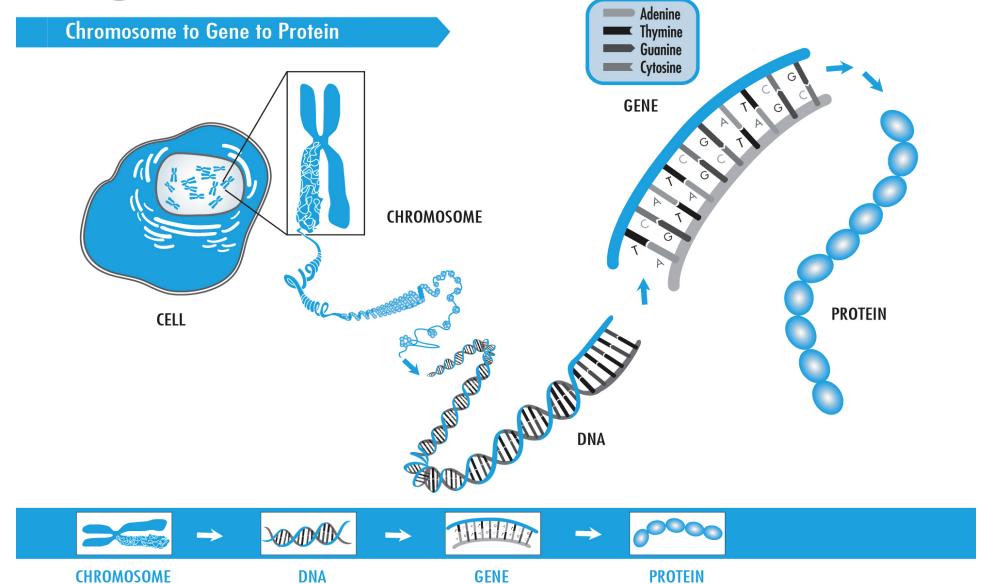
Associate Professor, Pediatrics, Uniformed Services University of the Health Sciences

Clesson Turner, M.D. is a pediatrician, clinical geneticist, and clinical-molecular geneticist at the Uniformed Services University of the Health Sciences. He is particularly interested in implementation of genomic medicine in the military health system. Prior to retiring from the Army, Dr. Turner served as the Chief of Genetics at Walter Reed National Military Medical Center and the Chief of Cancer Genetics at the Murtha Cancer Center. He is currently Interim Director of the Uniformed Services University initiative in precision medicine, PRIMER (**PR**ecision medicine Initiative for **M**ilitary **E**ducation and Research).

Disclosures

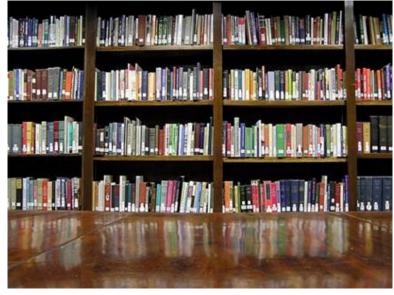
- Dr. Clesson Turner has no relevant financial or non-financial relationships to disclose relating to the content of this activity.
- The views expressed herein are those of the author and do not reflect the official policy or positon of Brooke Army Medical Center, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Defense Health Agency, the Department of the Army and Air Force, the Department of Defense or the U.S. Government.
- This continuing education activity is managed and accredited by the Defense Health Agency, J-7, Continuing Education Program Office (DHA, J-7, CEPO). DHA, J-7, CEPO and all accrediting organizations do not support or endorse any product or service mentioned in this activity.
- DHA, J-7, CEPO staff, as well as activity planners and reviewers have no relevant financial or non-financial interest to disclose.
- Commercial support was not received for this activity.

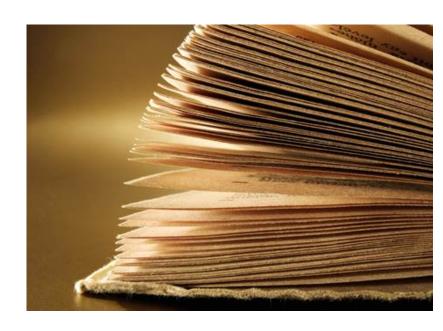
Learning Objectives


At the end of this presentation, the participants will be able to:

- 1. Identify the role of a genomics in primary care.
- 2. Discuss circumstances in which genetic testing may be beneficial.
- 3. Summarize current genetic testing options.
- 4. Explain when to refer a patient to a geneticist or genetic counselor.

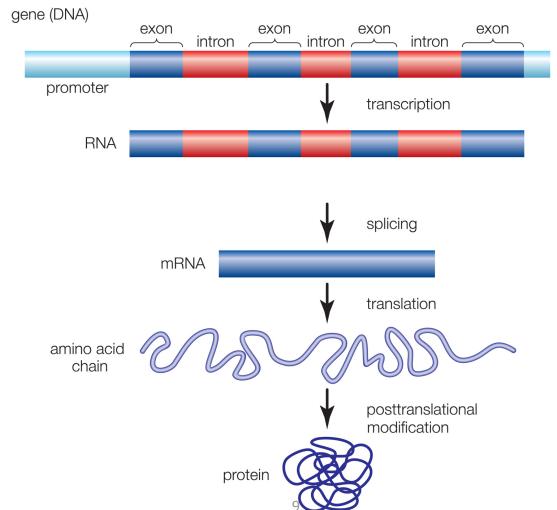
BACKGROUND




Background

Genome Analogy

Genome


Chromosome

Gene

(Themuseumtimes.com, 2015) (Meraresult.com, n.d.) (Etsy.com, n.d.)

Basic Structure of Gene

Cases

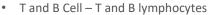
• Case 1

 Case 2 - Five year old male with Autism

Cases-History and Exam

- Case 1
 - Platinum Hair
 - Albinism

- Case 2
 - Autism
 - Occipitofrontal
 circumference (OFC) >>+2 standard deviation
 (SD) above mean for age



Cases-Clinical Testing

- Case 1
 - Peripheral Smear normal
 - Immunology
 - Normal T and B cell subsets
 - Natural killer (NK cell) Function
 - 0.0 Lytic units (normal >2.6)

- Case 2
 - None

NK cell – Natural Killer Cell

Cases-Clinical Diagnosis

- Case 1
 - Griscelli Syndrome
 - about 100 cases a year in the US
 - Autosomal Recessive (AR)
 - intracellular trafficking genes
 - Clinical features:
 - Partial oculocutaneous albinism
 - Neutropenia and thrombocytopenia
 - Hemophagocytic lymphohistiocytosis (HLH)
 - Progressive neurologic involvement (cerebral lymphohistiocytic infiltration)


- Case 2
 - Autism
 - > 1000 genetic associations
 - Macrocephaly

Autism Spectrum Disorders

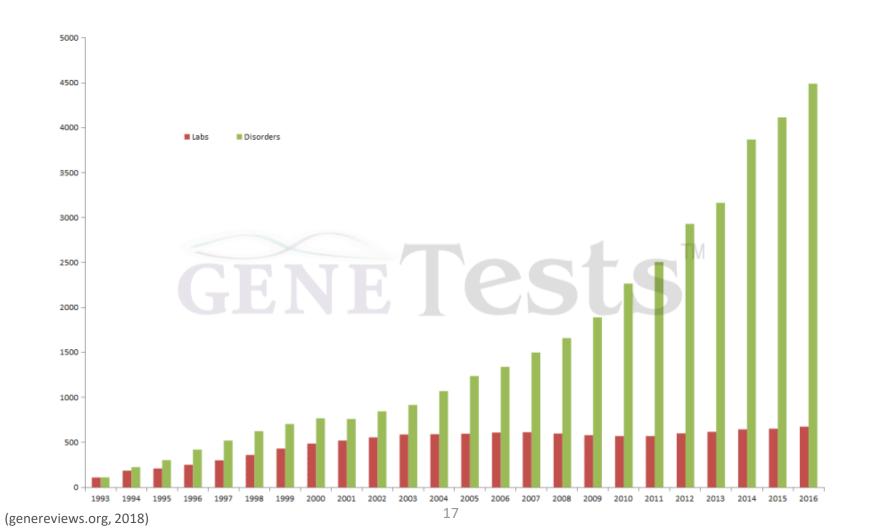
Highly heritable – twin studies estimate 85-92%

- •The most genetic of all developmental neuropsychiatric syndromes
- •Risk of 2-8% among siblings (20-80X higher than in general population)

Frequency of Disorder

Frequency of disorder

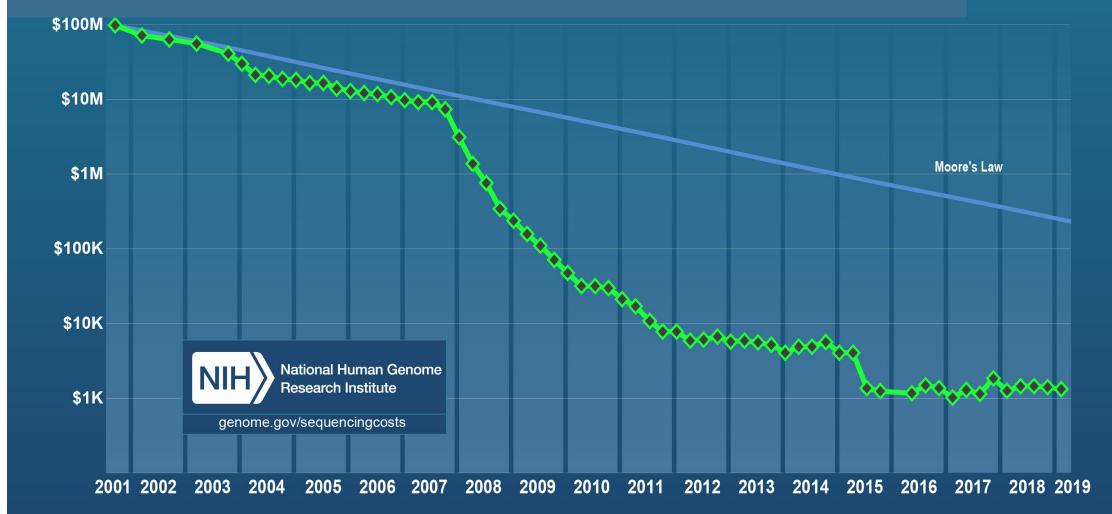
Extremely rare disorder	Very rare disorder	Rare disorder	 	Common disorder
Schinzel-Giedion syndrome	Miller syndrome	Complex I deficiency	 	Intellectual disability
SETBP1	(DHODH)	(NDUFS1) ACAD9		JARID1C YY1 RAB39B CIC DEAF1 SYNGAP1 PYNC1H1
Locus specific	Single gene	Few genes	! 	Many genes


Mutational target

WHAT TEST TO ORDER?



Available Genetic Tests



Available Genetic Tests

Cost of Genome Sequencing

Caution

Genomic Variation

Panel 3: Types of clinically important genomic variation

Single nucleotide variants (one base replaced by another)

- Synonymous: no change in the encoded amino acid
- Missense: change in the encoded amino acid
- Nonsense: premature termination of the peptide chain
- Splice site: variant occurring at the boundary of an exon and an intron (splice site), which can disrupt RNA splicing and result in the loss of exons or inclusion of introns and an altered protein-coding sequence²⁸

Structural variants

- Deletion: one or more bases deleted from the sequence
- Insertion: one or more bases added to the sequence
- Duplication: segment of DNA copied abnormally one or more times
- Frameshift: addition or deletion of one or two bases (or any number that is not a multiple of three) that shifts the reading frame of three bases per amino acid, producing an altered or truncated protein
- Expansion: short DNA sequences repeated many times
- Inversion: a chromosomal segment reversed end to end

Genetic Tests

Chromosome Analysis

5-8 Mb

Fluorescence
In situ
Hybridization (FISH)

1-5 Mb

Chromosomal Microarray (CMA)

50-100 Kb

Sequencing

Single Base pair

Uniformed Services University

(Flickr.com, n.d.) (Countrybooks.com, n.d.) (Vice.com, 2012) (Pinterest.com, n.d.)

Types of Genetic Test

etic Test	Example				
Single gene					
Minimal locus heterogeneity (only one or a small number of genes is known to cause the condition)	CFTR for cystic fibrosis				
Distinctive clinical findings that clearly indicate a specific gene	PAH for phenylketonuria				
Gene panel					
Locus heterogeneity (multiple genes are known to cause the same condition or similar conditions)	Muscular dystrophy panel				
Disorders with overlapping phenotypes	Cardiomyopathy panel				
Disorders that share one manifestation but can have very different presentations	Epilepsy panel				
Disorders associated with genes from a common pathway or structure	RASopathy panel				
Exome					
Extreme heterogeneity and de novo mutations common	Autism, intellectual disability				
Two or more unrelated phenotypes in one patient	Oculocutaneous albinism and neutropenia				
No distinctive phenotypic features present	Kabuki syndrome				
Phenotype indistinct and underlying cause is not clear	Congenital diarrhoea, Zellweger syndrome				
Genome*					
Non-coding variation is suspected as a cause	Hypertrophic cardiomyopathy ³⁷				
Structural variation is suspected as a cause	DiGeorge syndrome ²⁹				
Exome sequencing has already been performed and was non-diagnostic	Undiagnosed Diseases Network ³⁸				
Rapid generation of sequencing data needed for patients who are critically ill	Neonates in intensive care ⁵				
*Indications for exome also apply to genome, with the addition of those listed below.					
Table 1: Indications for single gene, gene panel, exome, and genome sequencing ³⁹					

Cases-Test Selection

- Case 1
 - Traditional Approach
 - Key on specific features or diagnosis
 - Test for specific associated mutations

- Case 2
 - Autism
 - Baseline
 - Microarray, Fragile X
 - Further testing if above negative

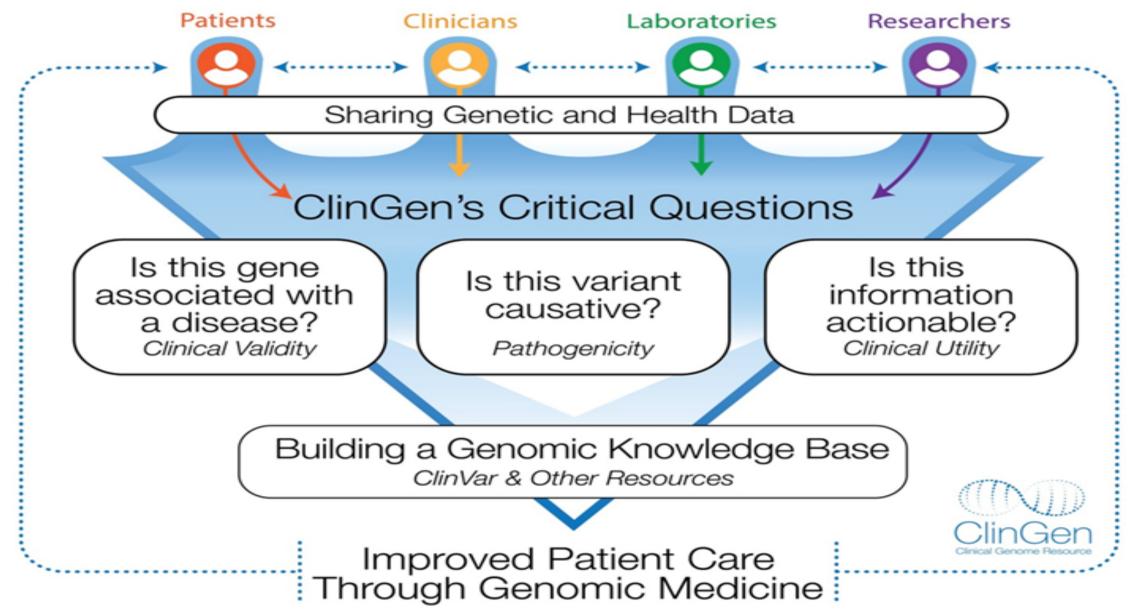
Cases-Test Ordered

- Case 1
 - Traditional Approach
 - Sequencing Panel for three genes associated with Griscelli Syndrome

- Autism
 - Baseline
 - Microarray, Fragile X
 - Autism/ID sequencing
 Panel considered
 - >2,000 genes

Cases-Results

- Case 1
 - RAB27A
 - Apparently homozygous
 c.37T>G, p.Leu13Val



- Case 2
 - Microarray, Fragile X
 - No change found
 - Autism/ID sequencing
 Panel
 - PTEN
 - c.203A>G,p.Tyr68Cys

2

Genomic Medicine

GENE DISEASE RELATIONSHIP

Gene Disease Relationship

Get Started About Us - Curation Activities - Working Groups - Expert Panels - Documents & Announcements - Tools Q

View external resources

Uniformed Services University

External Resources

Name RAB27A
HGNC ID HGNC:9766

Cytogenetic Location 15q21.3

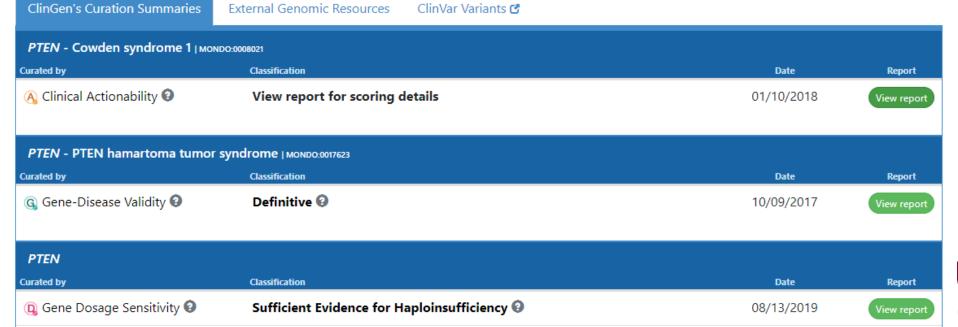
Haploinsufficiency Associated with Autosomal Recessive Phenotype 3

766 ClinVar Variants View ClinVar Variants 🗹
GeneReviews® View GeneReviews 🗹
ed with Autosomal

ClinGen's Curation Summaries External Genomic Resources ClinVar Variants 🗗 RAB27A - Griscelli syndrome type 2 | MONDO:0011872 Classification Curated by Date Report Q Gene Dosage Sensitivity ② Gene Associated with Autosomal Recessive Phenotype 🕢 05/31/2017 View report RAB27A Curated by Classification Date Report Q Gene Dosage Sensitivity ② Gene Associated with Autosomal Recessive Phenotype 🚱 05/31/2017

Gene Disease Relationship

Get Started About Us Curation Activities Working Groups Expert Panels Documents & Announcements Tools


Search: Gene
Gene
Get Started About Us Curation Activities Working Groups Expert Panels Documents & Announcements Tools

Go

Browse Curations

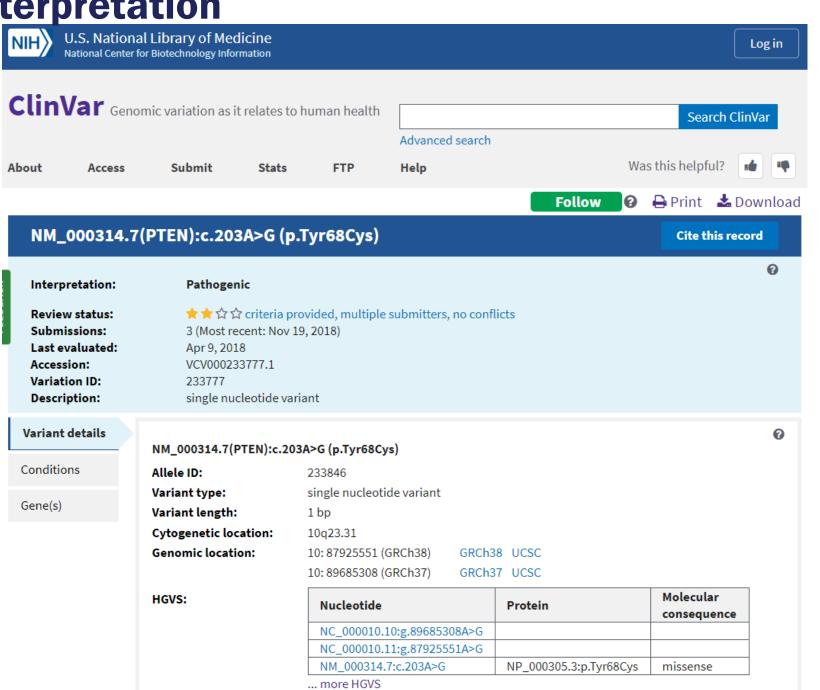
PTEN

Name
HGNC ID
Cytogenetic Location
TriplosensitivityPTEN
HGNC:9588External Resources
ClinVar Variants
GeneReviews®View clinVar Variants
View GeneReviews
View GeneReviewsCytogenetic Location
Haploinsufficiency
Triplosensitivity10q23.31
Sufficient Evidence ③
No Evidence ④GeneReviews®View GeneReviews ⑥

VARIANT INTERPRETATION

Variant Interpretation

	Definition		
Pathogenic	>99% certainty of being disease-causing		
Likely pathogenic	>90% certainty of being disease-causing		
Unknown significance	10-90% certainty of being disease-causing		
Likely benign	>90% certainty of not being disease-causing		
Benign	>99% certainty of not being disease-causing		



Variant Interpretation

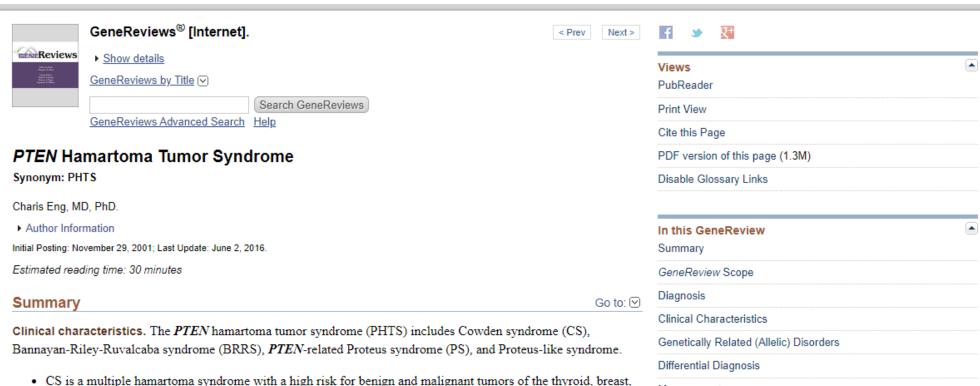
	Ber	nign		,		
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→	
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in trans with a dominant variant BP2 Observed in cis with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3		
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5			
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4			

Variant Interpretation

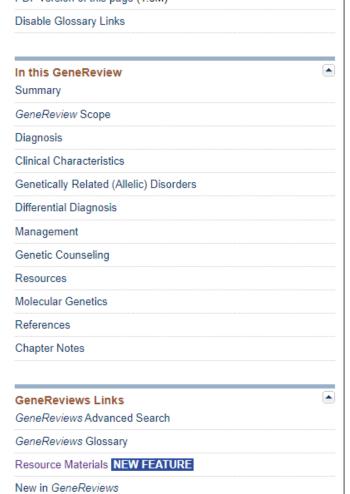
Cases-Variant Interpretation

- Case 1
 - RAB27A
 - c.37T>G, p.Leu13Val
 - Variant of uncertain significance (VUS)

- Case 2
 - PTEN
 - c.203A>G, p.Tyr68Cys
 - Pathogenic


CLINICAL UTILITY

	Patients and family members	Clinicians	Geneticists and genetic counsellors	Diagnostic laboratory scientists	Genomics researchers		
Clinical reference resources	Genetics Home Reference	MedGen, Genetic Testing Registry, Clinical Pharmacogenetics Implementation Consortium	Online Mendelian Inheritance in Man	Clinical Genome Resource, ClinVar	GeneCards, PharmGKB, The Cancer Genome Atlas		
Educational resources	NHGRI Talking Glossary of Genetic Terms, Your Genome, Genetic Alliance	Genetics/Genomics Competency Center, GeneReviews	NA	NA	NA		
Data resources	GenomeConnect, MyGene2	NA	Matchmaker Exchange	Genome Aggregation Database	Gene-Tissue Expression Project, Monarch Initiative, Alliance of Genome Resources		
NHGRI=National Human Genome Research Institute. NA=not applicable.							


Table 3: Examples of resources for reference, education, and data sharing by user group

- CS is a multiple hamartoma syndrome with a high risk for benign and malignant tumors of the thyroid, breast, and endometrium. Affected individuals usually have macrocephaly, trichilemmomas, and papillomatous papules, and present by the late 20s. The lifetime risk of developing breast cancer is 85%, with an average age of diagnosis between 38 and 46 years. The lifetime risk for thyroid cancer (usually follicular, rarely papillary, but never medullary thyroid cancer) is approximately 35%. The risk for endometrial cancer may approach 28%.
- BRRS is a <u>congenital</u> disorder characterized by macrocephaly, intestinal hamartomatous polyposis, lipomas, and pigmented macules of the glans penis.
- PS is a complex, highly variable disorder involving <u>congenital</u> malformations and hamartomatous overgrowth
 of multiple tissues, as well as connective tissue nevi, epidermal nevi, and hyperostoses.
- Proteus-like syndrome is undefined but refers to individuals with significant clinical features of PS who do not
 meet the diagnostic criteria for PS.

Diagnosis/testing. The diagnosis of PHTS is established in a <u>proband</u> by identification of a <u>heterozygous</u> <u>germline</u> *PTEN* <u>pathogenic variant on molecular genetic testing.</u>

DIAGNOSTIC YIELD

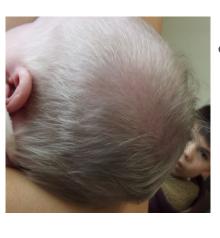
	Diagnostic rate, n/N (%)
Splinter et al (2018)³	
Paediatric and adult	132/382 (35%)
Yang et al (2014)14	
Fetus	6/11 (55%)
<5 years	247/900 (27%)
5–18 years	210/845 (25%)
18 years	41/244 (17%)
All ages	504/2000 (25%)
Lee et al (2014)15	
Paediatric and adult	213/814 (26%)
Bick et al (2017)16	
Paediatric	8/22 (36%)

	Age group	Management changes
Splinter et al (2018) ³	Paediatric and adult	28 (21%) of 132 patients had change in therapy; 49 (37%) of 132 had change in care other than therapy; 48 (36%) of 132 had variant-specific genetic counselling
Bick et al (2017) ¹⁶	Paediatric	Six (75%) of eight patients had change to medical management or surveillance; four (50%) of eight had changes in medication; six (75%) of eight had medical surveillance
Retterer et al (2016) ¹⁷	Paediatric and adult	Five (1%) of 876 diagnosed patients had suggested intervention or treatment
Stark et al (2016) ¹⁸	0–2 years	15 (33%) of 46 patients had change to clinical management (three started additional treatment, five had treatments stopped or modified, nine had additional surveillance for known complications, one had surveillance stopped)
Stavropoulos et al (2016)19	<1 month to 18 years	32 (94%) of 34 patients had a change in clinical management
Normand et al (2018) ²²	Prenatal	Four of 19 cases with information had medical management changes; 15 of 19 had reproductive planning; 10 had recurrence risk information
Meng et al (2017) ²⁴	Infant (<100 days)	Medical management affected for 53 (52%) of 102 infants

(Wise et al., 2019) 41

Cases-Follow up Testing

• Case 1

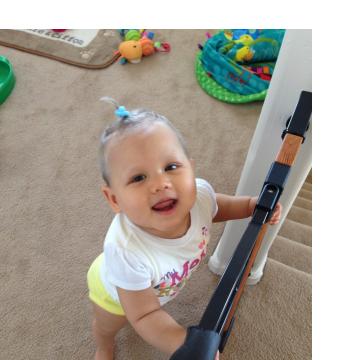

- RAB27A Deletion/Duplication
 - negative
- Parental testing
 - Father Heterozygous for mutation
 - Mother negative
- Microarray
 - upd(15)pat.arr[hg19]15q11.2q14(2
 3,706,111-102,398,213)x2 hmz

- Case 2
 - PTEN
 - c.203A>G, p.Tyr68Cys
 - Pathogenic

Cases-Final Diagnoses

• Case 1

- Autosomal recessive (AR)


 Griscelli Syndrome secondary
 to homozygosity for *RAB27A*mutation
- Paternal UPD15
- Angelman Syndrome

- Case 2
 - PTEN-Hamartoma Tumor
 Syndrome
 - Patient and mother

Cases-Clinical Follow Up

- Case 1
 - Human leukocyte antigen (HLA)
 matched bone marrow transplant
 (BMT) from donor list

- Case 2
 - PTEN-Hamartoma Tumor Syndrome
 - National Comprehensive Cancer Network (NCCN) guidelines for enhanced screening
 - Mother-risk reduction mastectomy

SECONDARY FINDINGS

	Associated genes†	Pathogenic variant rate among unselected population‡	Process outcomes	Intermediate outcomes	Clinical outcomes
Hereditary breast and ovarian cancer	BRCA1, BRCA2	0.5%17	Breast cancer screen modality and schedule	Breast biopsy findings	Prophylactic mastectomy or oophorectomy; diagnosis of breast or ovarian cancer and presenting stage
Lynch syndrome	MLH1, MSH2, MSH6, PMS2	0-4%	Colorectal cancer screen modality and schedule	Colonoscopy findings, polypectomy	Bilateral salpingo-oophorectomy; incidence and presenting stage of colorectal cancer, ovarian cancer, or endometrial cancer
Familial hypercholesterolaemia	LDLR, ABOB, PCSK9	0-4%18	Measurement of LDL cholesterol	Initiation or intensification of statin or PCSK9 inhibitor therapy	Atherosclerotic disease: myocardial infarction, cerebrovascular accident, or peripheral vascular disease
Familial hypertrophic and dilated cardiomyopathy	TTN, TNNT2, LMNA, MYH7	0.2%19,20	Echocardiogram screening, creatine kinase measurement	Left ventricular wall thickness; implantation of defibrillator or pacemaker	Diagnosis of cardiomyopathy; incidence and presenting stage of congestive heart failure
Familial arrhythmia	SCN5A, KCNH2, KCNQ1, RYR2	0.03%§21	Electrocardiogram or electrophysiology studies	Medical prophylaxis; defibrillator placement	Incidence of ventricular arrhythmia or sudden death
Hereditary haemochromatosis	HFE	0.5%	Ferritin, transferrin saturation measurement	Liver biopsy	Diagnosis of iron overload, cirrhosis, diabetes, or dilated cardiomyopathy

^{*}Subset of returnable conditions. Distinct genes and genomic diagnoses are grouped by related phenotypes. †Partial list of genes associated with condition. ‡Approximate pathogenic and likely pathogenic rate; variant rates vary by ethnicity. §Additional data from the Genome Aggregation Database.

Table 1: Examples of process, intermediate, and clinical outcomes potentially resulting from sequencing studies by generic syndrome(s)*

CHALLENGES

Challenges

Panel 2: Challenges to implementation of genomic medicine¹

- Lack of familiarity and understanding by patients and clinicians
- · Poor access to genomic medicine expertise and testing
- High cost and lack of reimbursement for genetic or genomic tests and services
- Accessibility and relevance of genetic or genomic testing and interpretation to under-represented and non-European populations
- Potentially overwhelming and rapidly evolving nature of genomic information
- Need for extensive informatics and infrastructure to integrate genomic results into electronic medical records and provide clinical decision support
- Little evidence of the effectiveness of using genomic information in clinical care
- Non-acceptance of genomic medicine by institutions and clinicians
- Potential burden of following up genotyped patients when the clinical significance of genomic variants changes or becomes clear
- Potential responsibility for outreach to at-risk family members
- Community perceptions and concerns regarding consent, patient privacy and confidentiality, and discrimination

Uniformed Services University

(Manolio et al., 2019)

Uniformed Service

Key Takeaways

- Resources to answer genetic counseling questions include ClinVar and ClinGen.
- Single gene, Gene panel, Exome and Genome are all types of genetic testing.
- There are various challenges to utilizing Genetics in Primary Care, however being aware of resources can alleviate some of the obstacles.

QUESTIONS?

References

ClinGen. (n.d.). Clinical Genome Resource. https://clinicalgenome.org/

Gilissen, C., Hoischen, A., Brunner, H.G., & Veltman, J.A. (2011). Unlocking Mendelian disease using exome sequencing. *Genome Biology*, 12, 228. https://genomebiology.biomedcentral.com/articles/10.1186/gb-2011-12-9-228

Manolio, T.A., Rowley, R., Williams, M.S. & et al. (2019). Opportunities, resources, and techniques for implementing genomics in clinical care.

Lancet, 394(10197), 511-520. https://doi.org/10.1016/S0140-6736(19)31140-7

National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine. (n.d.) ClinVar.

https://www.ncbi.nlm.nih.gov/clinvar/

Schaaf, C.P. & Zoghbi, H.Y. (2011). Solving the autism puzzle a few pieces at a time. *Neuron*, 9, 70(5); 806-808.

https://doi.org/10.1016/j.neuron.2011.05.025

Wise, A.L., Manolio, T.A., Mensah, G.A. & et al. (2019). Genomic medicine for undiagnosed diseases. *Lancet*, 394(10197), 533-540.

https://doi.org/10.1016/S0140-6736(19)31274-7

How to Obtain CE/CME Credit

To receive CE/CME credit, you must register by 0900 ET on 23 April 2021 to qualify for the receipt of CE/CME credit or certificate of attendance. You must complete the program posttest and evaluation before collecting your certificate. The posttest and evaluation will be available through 06 April 2021 at 2359 ET. Please complete the following steps to obtain CE/CME credit:

- 1. Go to URL: https://www.dhaj7-cepo.com/content/apr-2021-ccss-children-and-youth-transition-04-22-2021
- 2. Click on the REGISTER/TAKE COURSE tab.
 - a. If you have previously used the CEPO CMS, click login.
 - b. If you have not previously used the CEPO CMS click register to create a new account.
- 3. Follow the onscreen prompts to complete the post-activity assessments:
 - a. Read the Accreditation Statement
 - b. Complete the Evaluation
 - c. Take the Posttest
- 4. After completing the posttest at 80% or above, your certificate will be available for print or download.
- 5. You can return to the site at any time in the future to print your certificate and transcripts at https://www.dhaj7-cepo.com/
- 6. If you require further support, please contact us at dha.ncr.j7.mbx.cepo-cms-support@mail.mil