

Management of COVID-19 in Pregnancy

Navy Lt. Cmdr. Michael Miller, M.D. Arthur Jason Vaught, M.D. 25 February 2021

Presenters

Navy Lt. Cmdr. Michael Miller, M.D.

Clinical Fellow

The Johns Hopkins University School of Medicine, Baltimore, MD

Arthur Jason Vaught, M.D.

Assistant Professor, Department of Gynecology and Obstetrics Division of Maternal Fetal Medicine

Assistant Professor, Department of Surgery, Division of Trauma, Acute Care Surgery, and Surgical Critical Care

The Johns Hopkins University School of Medicine, Baltimore, MD

Disclosure

Navy Lt. Cmdr. Michael Miller and Dr. Jason Vaught have no relevant financial or non-financial relationships to disclose relating to the content of this activity.

The views expressed in this presentation are those of the author and do not necessarily reflect the official policy or position of the Department of Defense, nor the U.S. Government.

This continuing education activity is managed and accredited by the Defense Health Agency, J-7, Continuing Education Program Office (DHA, J-7,CEPO). DHA, J-7, CEPO and all accrediting organizations do not support or endorse any product or service mentioned in this activity.

DHA, J-7, CEPO staff, as well as activity planners and reviewers have no relevant financial or non-financial interest to disclose.

Commercial support was not received for this activity.

This activity discusses off-labeled uses of remdesivir and dexamethasone for purposes other than that for which the product(s) use was approved by the FDA.

Learning Objectives

At the conclusion of this activity, participants will be able to:

- 1. Describe the Centers for Disease Control and Prevention (CDC) recommendations for the use of remdesivir in treating COVID-19.
- 2. Explain the CDC recommendations for the use of dexamethasone in treating COVID-19.
- 3. Comprehend and apply the appropriate escalation of supplemental oxygen in patients with COVID-19.
- 4. Recognize indications for escalation of care to the Intensive Care Unit (ICU) for patients with COVID-19.

- Current Status
- Current Therapeutics
- Risks

Main References

- National Institutes of Health (NIH) Coronavirus Treatment guidelines (NIH, 2021)
 - https://www.covid19treatmentguidelines.nih.gov/

Confirmed New Cases

New reported cases by day

(nytimes.com, 2020)

U.S. deaths from wars and major pandemics

58,220

36,574

675,000

405,399

116,516

112,311

4,418

100,000

1918 SPANISH FLU

WORLD WAR II

WORLD WAR I

COVID-19

1968 PANDEMIC

VIETNAM CONFLICT

Korean war

OPERATION IRAQI FREEDOM

PERSIAN GULF WAR 2,586 OPERATION ENDURING FREEDOM 2,349

CHART: LANCE LAMBERT • SOURCE: JOHNS HOPKINS UNIVERSITY AND STATISTA

FORTUNE

Pathophysiology

How does it function?

Pathophysiology

(Jin et al., 2021)

Pathophysiology

80% of US coronavirus deaths have been among people 65 and older, a new CDC report says — here's what it reveals about the US cases

COVID-19 death rate by age

Source: Chinese Center for Disease Control and Prevention

BUSINESS INSIDE

(McFall-Johnsen, 2020)

Stages of Disease

ARDS- Acute Respiratory Distress Syndrome; Pa02- Partial Pressure of Oxygen; Fi02- Fraction of Inspired Oxygen; SIRS- Systemic Inflammatory Response Syndrome

COVID Severity of Illness

Sp02- Saturation of Peripheral Oxygen; E/o- Evidence of; SOB- Shortness of Breath; S/sx- Signs and symptoms

Symptoms

What do we expect clinically?

WHAT TO EXPECT WHEN YOU'RE EXPECTING 5th EDITION

The all-in-one guide that explains everything you need to know—and can't wait to find out—about your amazing nine months, from conception to birth and beyond. Featuring a week-by-week look at your baby, and information just for dads throughout.

Completely New & Revised

...And have COVID-19

Morbidity and Mortality Weekly Report (MMWR)

- National Notifiable Diseases Surveillance System (NNDSS)
- 1.3 million women from Jan22-Oct3 2020 with laboratory + COVID
 - Pregnancy status available for 460k (35.5%)
 - 30k pregnant (6.6%)
- 89% of women were symptomatic

Most Common Symptoms

Characteristic	Pregnant (n = 23,434)	Nonpregnant (n = 386,028)	Total (N = 409,462)		
Signs and symptoms					
Known status of individual signs and symptoms [¶]	10,404	174,198	184,602		
Cough	5,230 (50.3)	89,422 (51.3)	94,652 (51.3)		
Fever**	3,328 (32.0)	68,536 (39.3)	71,864 (38.9)		
Muscle aches	3,818 (36.7)	78,725 (45.2)	82,543 (44.7)		
Chills	2,537 (24.4)	50,836 (29.2)	53,373 (28.9)		
Headache	4,447 (42.7)	95,713 (54.9)	100,160 (54.3)		
Shortness of breath	2,692 (25.9)	43,234 (24.8)	45,926 (24.9)		
Sore throat	2,955 (28.4)	60,218 (34.6)	63,173 (34.2)		
Diarrhea	1,479 (14.2)	38,165 (21.9)	39,644 (21.5)		
Nausea or vomiting	2,052 (19.7)	28,999 (16.6)	31,051 (16.8)		
Abdominal pain	870 (8.4)	16,123 (9.3)	16,993 (9.2)		
Runny nose	1,328 (12.8)	22,750 (13.1)	24,078 (13.0)		
New loss of taste or smell ⁺⁺	2,234 (21.5)	43,256 (24.8)	45,490 (24.6)		
Fatigue	1,404 (13.5)	29,788 (17.1)	31,192 (16.9)		
Wheezing	172 (1.7)	3,743 (2.1)	3,915 (2.1)		
Chest pain	369 (3.5)	7,079 (4.1)	7,448 (4.0)		

Most common symptoms were cough (50%), fever (32%), muscle aches (37%) and headache (43%).

Chest CT Findings

- Multi-focal
- Rounded
- Bilateral
- Ground glass opacities
- Peripheral
- Superimposed, intralobar septal thickening (i.e. "crazy paving"

Recommended CT Reporting Language

COVID-19 pneu-

monia imaging clas-

sification	Rationale (6–11)	CT Findings*	Suggested Reporting Language
Typical appearance	Commonly reported imag- ing features of greater specificity for COVID-19 pneumonia.	 Peripheral, bilateral, GGO with or without consolidation or visible intralobular lines ("crazy-paving") Multifocal GGO of rounded morphology with or without consolidation or visible intralobu- lar lines ("crazy-paving") Reverse halo sign or other findings of organizing pneumonia (seen later in the disease) 	"Commonly reported imaging features of (COVID-19) pneumonia are present. Other processes such as influenza pneu- monia and organizing pneumonia, as can be seen with drug toxicity and connective tissue disease, can cause a similar imaging pattern." [Cov19Typ] [†]
Indeterminate appearance	Nonspecific imag- ing features of COVID-19 pneumonia.	 Absence of typical features AND Presence of: Multifocal, diffuse, perihilar, or unilateral GGO with or without consolidation lacking a specific distribution and are nonrounded or nonperipheral. Few very small GGO with a nonrounded and nonperipheral distribution 	"Imaging features can be seen with (CO- VID-19) pneumonia, though are non- specific and can occur with a variety of infectious and noninfectious processes." [Cov19Ind] [†]
Atypical appearance	Uncommonly <i>or</i> not reported features of COVID-19 pneumonia.	 Absence of typical or indeterminate features AND Presence of: Isolated lobar or segmental consolidation without GGO Discrete small nodules (centrilobular, "tree-inbud") Lung cavitation Smooth interlobular septal thickening with pleural effusion 	"Imaging features are atypical or uncom- monly reported for (COVID-19) pneu- monia. Alternative diagnoses should be considered." [Cov19Aty] [†]
Negative for pneu- monia	No features of pneumonia	No CT features to suggest pneumonia.	"No CT findings present to indicate pneu- monia. (Note: CT may be negative in the early stages of COVID-19.) [Cov19Neg] [†]

Symptomatology

Characteristic	Pregnant (n = 23,434)	Nonpregnant (n = 386,028)	Total (N = 409,462)	
Signs and symptoms				
Known status of individual signs and symptoms [¶]	10,404	174,198	184,602	
Cough	5,230 (50.3)	89,422 (51.3)	94,652 (51.3)	
Fever**	3,328 (32.0)	68,536 (39.3)	71,864 (38.9)	
Muscle aches	3,818 (36.7)	78,725 (45.2)	82,543 (44.7)	
Chills	2,537 (24.4)	50,836 (29.2)	53,373 (28.9)	
Headache	4,447 (42.7)	95,713 (54.9)	100,160 (54.3)	
Shortness of breath	2,692 (25.9)	43,234 (24.8)	45,926 (24.9)	
Sore throat	2,955 (28.4)	60,218 (34.6)	63,173 (34.2)	
Diarrhea	1,479 (14.2)	38,165 (21.9)	39,644 (21.5)	
Nausea or vomiting	2,052 (19.7)	28,999 (16.6)	31,051 (16.8)	
Abdominal pain	870 (8.4)	16,123 (9.3)	16,993 (9.2)	
Runny nose	1,328 (12.8)	22,750 (13.1)	24,078 (13.0)	
New loss of taste or smell ⁺⁺	2,234 (21.5)	43,256 (24.8)	45,490 (24.6)	
Fatigue	1,404 (13.5)	29,788 (17.1)	31,192 (16.9)	
Wheezing	172 (1.7)	3,743 (2.1)	3,915 (2.1)	
Chest pain	369 (3.5)	7,079 (4.1)	7,448 (4.0)	

Most symptoms are less prevalent in pregnant women than non-pregnant women

	No. (per 1,000 case	es) of symptomatic women	Risk ratio (95% CI)	
Outcome*/Characteristic	Pregnant (n = 23,434)	Nonpregnant (n = 386,028)	Crude [†]	Adjusted ^{†,§}
ICU admission [¶] All	245 (10.5)	1,492 (3.9)	2.7 (2.4–3.1)	3.0 (2.6–3.4)
Age group, yrs 15–24	49 (7.6)	244 (1.8)	4.1 (3.0-5.6)	3.9 (2.8-5.3)
25-34	118 (9.1)	467 (3.5)	2.6 (2.1–3.1)	2.4 (2.0–3.0)
Race/Ethnicity	78 (19.4)	761 (0.4)	5.0 (2.4–5.8)	5.2 (2.3-4.0)
Hispanic or Latina Al/AN, non-Hispanic	89 (12.8) 0 (0)	429 (5.0) 13 (7.9)	2.6 (2.0–3.2) NA	2.8 (2.2–3.5) NA
Asian, non-Hispanic	20 (35.7)	52 (6.0)	5.9 (3.6–9.8)	6.6 (4.0–11.0)
NHPI, non-Hispanic	5 (42.0)	22 (14.4)	2.9 (1.1–7.6)	3.7 (1.3–10.1)
White, non-Hispanic Multiple or other race, non-Hispanic	31 (5.6) 8 (11.0) 46 (7.6)	348 (2.8) 37 (3.0) 257 (2.6)	2.0 (1.4–2.9) 3.7 (1.7–7.9) 2.9 (2.1–3.9)	2.3 (1.6–3.3) 4.1 (1.9–8.9) 3.4 (2.5–4.7)
onknown/not reported	-0(7.0)	207 (2.0)	2.9 (2.1-3.9)	J.+ (2.J-+./)

Pregnant women had an absolute risk reduction (aRR) of 3.0 for admission to the Intensive Care Unit (ICU)

	No. (per 1,000 case	s) of symptomatic women	Risk ratio (95% CI)	
Outcome*/Characteristic	Pregnant (n = 23,434)	Nonpregnant (n = 386,028)	Crude [†]	Adjusted ^{†,§}
Invasive ventilation ^{††} All	67 (2.9)	412 (1.1)	2.7 (2.1–3.5)	2.9 (2.2–3.8)
Age group, yrs				
15–24	11 (1.7)	68 (0.5)	3.3 (1.8–6.3)	3.0 (1.6–5.7) ^{§§}
25–34	30 (2.3)	123 (0.9)	2.5 (1.7–3.7)	2.5 (1.6–3.7) ^{§§}
35–44	26 (6.5)	221 (1.8)	3.5 (2.4–5.3)	3.6 (2.4–5.4)
Race/Ethnicity				
Hispanic or Latina	33 (4.7)	143 (1.7)	2.8 (1.9-4.1)	3.0 (2.1-4.5)
Al/AN, non-Hispanic	0 (0)	5 (3.0)	NA	NA
Asian, non-Hispanic	4 (7.1)	19 (2.2)	NA	NA
Black, non-Hispanic	10 (3)	86 (1.6)	1.9 (1.0–3.6)	2.5 (1.3-4.9)
NHPI, non-Hispanic	4 (33.6)	10 (6.6)	NA	NA
White, non-Hispanic	12 (2.2)	102 (0.8)	2.7 (1.5-4.8)	3.0 (1.7–5.6)
Multiple or other race, non-Hispanic	0 (0)	8 (0.6)	NA	NA
Unknown/Not reported	4 (0.7)	39 (0.4)	NA	NA

Pregnant women had an aRR of 2.9 for invasive ventilation

Women aged 35-44 were at especially high risk

	No. (per 1,000 cases) of symptomatic women		Risk ratio (95% CI)	
Outcome*/Characteristic	Pregnant (n = 23,434)	Nonpregnant (n = 386,028)	Crude [†]	Adjusted ^{†,§}
ECMO*** All	17 (0.7)	120 (0.3)	2.3 (1.4–3.9)	2.4 (1.5–4.0)
Age group,yrs				
15–24	6 (0.9)	31 (0.2)	4.0 (1.7–9.5)	NA ⁺⁺⁺
25–34	7 (0.5)	35 (0.3)	2.0 (0.9-4.6)	2.0 (0.9–4.4) ^{§§}
35–44	4 (1.0)	54 (0.4)	NA	NA
Race/Ethnicity				
Hispanic or Latina	6 (0.9)	35 (0.4)	2.1 (0.9–5.0)	2.4 (1.0-5.9)
Al/AN, non-Hispanic	0 (0)	1 (0.6)	NA	NA
Asian, non-Hispanic	0 (0)	1 (0.1)	NA	NA
Black, non-Hispanic	5 (1.5)	30 (0.6)	2.7 (1.0-6.9)	2.9 (1.1–7.3)
NHPI, non-Hispanic	0 (0)	2 (1.3)	NA	NA
White, non-Hispanic	4 (0.7)	29 (0.2)	NA	NA
Multiple or other race, non-Hispanic	0 (0)	3 (0.2)	NA	NA
Unknown/Not reported	2 (0.3)	19 (0.2)	NA	NA

Pregnant women had an aRR of 2.4 for Extracorporeal Membrane Oxygenation (ECMO)

	No. (per 1,000 cases	s) of symptomatic women	Risk ratio	(95% CI)
Outcome*/Characteristic	Pregnant (n = 23,434)	Nonpregnant (n = 386,028)	Crude [†]	Adjusted ^{†,§}
Death ^{§§§}				
All	34 (1.5)	447 (1.2)	1.3 (0.9–1.8)	1.7 (1.2–2.4)
Age group, yrs				
15–24	2 (0.3)	40 (0.3)	NA	NA
25–34	15 (1.2)	125 (0.9)	1.2 (0.7–2.1)	1.2 (0.7–2.1)
35–44	17 (4.2)	282 (2.3)	1.8 (1.1–3.0)	2.0 (1.2-3.2)
Race/Ethnicity				
Hispanic or Latina	14 (2.0)	87 (1.0)	2.0 (1.1-3.5)	2.4 (1.3–4.3)
AI/AN, non-Hispanic	0 (0)	5 (3.0)	NA	NA
Asian, non-Hispanic	1 (1.8)	11 (1.3)	NA	NA
Black, non-Hispanic	9 (2.7)	167 (3.1)	0.9 (0.4–1.7)	1.4 (0.7–2.7)
NHPI, non-Hispanic	2 (16.8)	6 (3.9)	NA	NA
White, non-Hispanic	3 (0.5)	83 (0.7)	NA	NA
Multiple or other race, non-Hispanic	0 (0)	12 (1.0)	NA	NA
Unknown/Not reported	5 (0.8)	76 (0.8)	1.1 (0.4–2.6)	1.4 (0.6–3.6)

Pregnant women had an aRR of 1.7 for death

Racial Disparities with COVID-19

- Hispanic women are overrepresented in the COVID+/symptomatic population
 - COVID+ : 30% Hispanic/24% White
 - General pregnant population: 24% Hispanic/51% White
- Hispanic women were at increased for death (aRR = 2.4)
- Regardless of pregnancy status, non-Hispanic Black women were at increased risk for death (Odds Ratio (OR)= 3.1)

Coronavirus

Influenza

cdc.gov, n.d.)

Comparison to Influenza

- Common knowledge says pregnancy= high risk from influenza
- Metaanalysis of 4k pregnant women has questioned this knowledge for SEASONAL influenza
 - Adjusted Odds Ratio (aOR)= 6.8 for hospitalization (95% Confidence Intervals (CI), 6.02-7.68)
 - aOR= 0.57 for ICU admission (95% Cl, 0.48-0.69)
 - aOR= 1.0 for death (95% Cl, 0.75-1.34)
- Prior studies have found increased risk with PANDEMIC influenza (H1N1 etc)

NCHS Mortality Reporting System: Pneumonia, Influenza and COVID-19 (PIC) Mortality United States, October 2, 2016 – October 17, 2020*

Data as of October 22, 2020

(cdc.gov, 2020)

MAMAND Mook

35

Recommendations

- Inform pregnant women of the risk of severe COVID associated illness
- Inform pregnant women of s/sx of COVID
- Limit unnecessary contact with people who may have been exposed
- When going out:
 - Wear a mask
 - Social distance
 - Avoid people not wearing masks
 - Wash hands frequently
- Keep up to date with general heath (seasonal flu vaccine, prenatal care)

Outpatient Assessment and Management for Pregnant Women With Suspected or Confirmed Novel Coronavirus (COVID-19)

Conduct Illness Severity Assessment

- Does she have difficulty breathing or shortness of breath?
- Does she have difficulty completing a sentence without gasping for air or needing to stop to catch breath frequently when walking across the room?
- Does patient cough more than 1 teaspoon of blood?
- Does she have new pain or pressure in the chest other than pain with coughing?
- Is she unable to keep liquids down?
- · Does she show signs of dehydration such as dizziness when standing?
- Is she less responsive than normal or does she become confused when talking to her?

No Positive Answers

Assess Clinical and Social Risks

- Comorbidities (Hypertension, diabetes, asthma, HIV, chronic heart disease, chronic liver disease, chronic lung disease, chronic kidney disease, blood dyscrasia, and people on immunosuppressive medications)
- Obstetric issues (eg, preterm labor)
- Inability to care for self or arrange follow-up if necessary

No Positive Answers

Low Risk

- Refer patient for symptomatic care at home including hydration and rest
- Monitor for development of any symptoms above and re-start algorithm if new symptoms present
- Routine obstetric precautions

Elevated Risk

Any Positive Answers

Recommend she immediately seek care in an emergency department or equivalent unit that treats pregnant women. When possible, send patient to a setting where she can be isolated.

Notifying the facility that you are referring a PUI is recommended to minimize the chance of spreading infection to other patients and/or healthcare workers at the facility

Adhere to local infection control practices including personal protective equipment

Moderate Risk

See patient as soon as possible in an ambulatory setting with resources to determine severity of illness. When possible, send patient to a setting where she can be isolated. Clinical assessment for respiratory compromise includes physical examination and tests such as pulse oximetry, chest X-ray, or ABG as clinically indicated.

Pregnant women (with abdominal shielding) should not be excluded from chest CT if clinically recommended.

If no respiratory compromise or complications and able to follow-up with care

Any Positive _

Answers

If yes to respiratory compromise or complications

Admit patient for further evaluation and treatment. Review hospital or health system guidance on infection control measures to minimize patient and provider exposure

Treatments

What can we do?

DISEASE SEVERITY	PANEL'S RECOMMENDATIONS
Not Hospitalized, Mild to Moderate COVID-19	There are insufficient data to recommend either for or against any specific antiviral or antibody therapy. SARS-CoV-2 neutralizing antibodies (bamlanivimab or casirivimab plus imdevimab) are available through EUAs for outpatients who are at high risk of disease progression. ^a These EUAs do not authorize use in hospitalized patients.
	Dexamethasone should not be used (AIII).
Hospitalized ^a But Does Not Require Supplemental Oxygen	Dexamethasone should not be used (Alla) . There are insufficient data to recommend either for or against the routine use of remdesivir . For patients at high risk of disease progression, the use of remdesivir may be appropriate.
Hospitalized [*] and Requires Supplemental Oxygen (But Does Not Require Oxygen Delivery Through a High-Flow Device, Noninvasive Ventilation, Invasive Mechanical Ventilation, or ECMO)	 Use one of the following options: Remdesivir^{b,c} (e.g., for patients who require minimal supplemental oxygen) (Blla) Dexamethasone^d plus remdesivir^{b,c} (e.g., for patients who require increasing amounts of supplemental oxygen) (Bll)^{e,f} Dexamethasone^d (e.g., when combination therapy with remdesivir cannot be used or is not available) (Bl)
Hospitalized ^a and Requires Oxygen Delivery Through a High-Flow Device or Noninvasive Ventilation	Use one of the following options: • Dexamethasone ^{d,f} (AI) • Dexamethasone ^d plus remdesivir ^{b,c} (BIII) ^{e,f}
Hospitalized [®] and Requires Invasive Mechanical Ventilation or ECMO	Dexamethasoned (AI) ^g
Rating of Recommendations: A = Strong; B = Mode Rating of Evidence: I = One or more randomized trials randomized trials: IIb = Nonrandomized trials or obes	erate; C = Optional als without major limitations; IIa = Other randomized trials or subgroup analyses of routional cohort studies: III = Expert opinion

CDC COVID Treatment Guidelines

(NIH.gov, 2021)

Stages of Disease

Remdesivir

- Nucleoside analogue of adenosine
- Prematurely terminates ribonucleic acid (RNA) replication
- Food and Drug Administration (FDA) approved for adults and peds (>age 12)
- FDA Emergency Use Authorization (EUA) peds < 12 years

(stock.adobe, n.d.)

(Seley-Radtke, 2020)

Remdesivir Pregnancy

- Pregnant women were excluded from all of the remdesivir clinical trials
- Well tolerated with few serious adverse side effects during compassionate use
- Should not be withheld unless otherwise contraindicated

- Adaptive COVID-19 Treatment Trial (ACCT-1)
 - Multinational, RCT
 - 1000 participants
 - Remdesivir (200 mg x 1d, 100 mg x 8d) vs Placebo

Primary Endpoint = Clinical Improvement

- 1. Not hospitalized, no limitations
- 2. Not hospitalized, with limitations
- 3. Hospitalized, no active medical problems
- 4. Hospitalized, not on oxygen
- 5. Hospitalized, on oxygen

6. Hospitalized, on high-flow oxygen or non-invasive mechanical ventilation

7. Hospitalized, on mechanical ventilation or ECMO

8. Death

Positive

Negative

- Reduced the time to recovery
- Clinical improvement was higher on Day 15 (OR 1.5; 95% Cl, 1.2-1.9)
- Hospitalized, on oxygen (group 5)
 - Recovery rate 1.45, 95% CI, 1.18-1.79
 - HR for death 0.28; 95% CI, 0.12-0.66

- Patients on high flow oxygen (group 6)
 - Recovery rate 1.09; 95% CI 0.76-1.57
 - HR for death 0.82; 95% Cl, 0.40-1.69
- Patients on mechanical ventilation/ECMO
 - Recovery rate 0.98; Cl

- Randomized Controlled Trial (RCT) China
 - Single site study in China
 - Planned enrollment of 450, but stopped after 237
 - No improvement in time to clinical improvement -21d vs 23d
 - 28-day mortality was similar
 - Viral load (VL) at baseline and rate of decrease of VL were similar
 - Multiple possible confounders
 - 65% received steroids
 - 30% received lopinavir/ritonavir
 - 30% receive Interferon Alfa (IFA)

- Open label RCT
 - Single site
 - SARS-CoV-2 + "moderate" pneumonia (radiographic findings and SpO2>94%)
 - 600 patients (200 x 3 randomization groups
 - 10-days Remdesivir
 - 5-days Remdesivir
 - Standard treatment
 - Remdesivir [200 mg x 1 then 100 mg once a day (qday)]

Positive

Negative

- 5-day remdesivir had better clinical status distribution on day 11 vs Standard care (OR 1.65; 95% CI 1.09-2.48)
- More hospital d/c by day 28 in remdesivir group (90% vs 83%)
- Low mortality in all groups (1-2%)

- Clinical status distribution for 10day remdesivir was not different from standard care
- Higher proportion of patients in standard care received hydroxychloroquine (HCQ), lopinavir/ritonavir or azithromycin

- Remdesivir Length of Treatment Trial
 - Manufacturer sponsored, multinational, randomized, open label trial
 - 400 patients (200 per group)
 - 10-day group had worse initial status compared to 5-day group
 - Age >12 with SARS-CoV-2 +radiographic pulmonary infiltrates
 - All had SpO2< 94% or were receiving supplemental O2, however, mechanical ventilation or ECMO were excluded
 - Remdesivir 10 days vs 5 days (200 mg x 1d, 100 mg qday)
 - Primary endpoint was time to clinical status on Day 14

Positive

None

Negative

- Day 14 distribution was similar between groups
- Time to achieve clinical improvement was similar
- Median duration of hospitalization was similar (7 days vs 8 days)
- Serious adverse events (AE) were more common in 10-day group 35% vs 21%

DISEASE SEVERITY	PANEL'S RECOMMENDATIONS
Not Hospitalized, Mild to Moderate COVID-19	There are insufficient data to recommend either for or against any specific antiviral or antibody therapy. SARS-CoV-2 neutralizing antibodies (bamlanivimab or casirivimab plus imdevimab) are available through EUAs for outpatients who are at high risk of disease progression. ^a These EUAs do not authorize use in hospitalized patients.
	Dexamethasone should not be used (AIII).
Hospitalized ^a But Does Not Require Supplemental Oxygen	Dexamethasone should not be used (Alla) . There are insufficient data to recommend either for or against the routine use of remdesivir . For patients at high risk of disease progression, the use of remdesivir may be appropriate.
Hospitalized* and Requires Supplemental Oxygen (But Does Not Require Oxygen Delivery Through a High-Flow Device, Noninvasive Ventilation, Invasive Mechanical Ventilation, or ECMO)	 Use one of the following options: Remdesivir^{b,c} (e.g., for patients who require minimal supplemental oxygen) (Blla) Dexamethasone^d plus remdesivir^{b,c} (e.g., for patients who require increasing amounts of supplemental oxygen) (Bll)^{e,f} Dexamethasone^d (e.g., when combination therapy with remdesivir cannot be used or is not available) (Bl)
Hospitalized ^a and Requires Oxygen Delivery Through a High-Flow Device or Noninvasive Ventilation	Use one of the following options: • Dexamethasone ^{d,t} (AI) • Dexamethasone ^d plus remdesivir ^{b,o} (BIII) ^{e,f}
Hospitalized ^a and Requires Invasive Mechanical Ventilation or ECMO	Dexamethasone ^d (Al) [□]
Rating of Recommendations: A = Strong; B = Moo Rating of Evidence: I = One or more randomized tri randomized trials; IIb = Nonrandomized trials or obs	derate; C = Optional ials without major limitations; IIa = Other randomized trials or subgroup analyses of ervational cohort studies; III = Expert opinion

CDC COVID Treatment Guidelines

(NIH.gov, 2021)

Other Anti-virals

- Hydroxychloroquine/Chloroquine
 - EUA granted 28 Mar 2020
 - EUA rescinded 15 Jun 2020
- Ivermectin
- Lopinavir/Ritonovir

Stages of Disease

Convalescent Plasma

- Used since 1800
- Initially used for diphtheria
- Only RCT showing efficacy was published in the 1970's
 - Argentine Hemorrhagic Fever
- Observational studies with severe acute respiratory syndrome (SARS) have suggested efficacy

Convalescent Plasma

- Mayo Clinic Expanded Access Program
- No difference in 7-day mortality between low and high titer
- In non-intubated patients
 - 7 day mortality was decreased from 14% to 11% for high vs low titers
- In patients < 80, treatment within 72 hrs of sx
 - 7-day mortality decreased from 11.3% to 6.3% for high vs low titer

Convalescent Plasma Safety

- Mayo Clinic Expanded Access
 Program
 - 20k patients
- 13 deaths (0.06%)
- 83 non-fatal serious adverse effects
 - 37 transfusion-associated circulatory overload (TACO) (0.18%)
 - 20 transfusion-related acute lung injury (TRALI) (0.10%)
 - 26 Allergic reactions (0.13%)

- Life threatening Adverse events
 - 87 venous thromboembolism (VTE) (0.16%)
 - 406 Hypotension (0.27%)
 - 643 Cardiac events (0.37%)
- Overall mortality 8.6%

Immunoglobulins

- IVIG SARS-CoV-2
 - RCT are in development, but not yet enrolling
- IVIG non-SARS-CoV-2
 - Retrospective, non-randomized trial performed in China showed no benefit
 - Significant limitations
 - Commonly used in pregnancy (neonatal alloimmune thrombocytopenia (NAIT) etc) and has good safety profile

Monoclonal Antibodies

- FDA has issued EUA for two neutralizing monoclonal antibodies
 - Casirivimab/Imdevimab (Regeneron)
 - Bamlanivimab (Eli Lilly)
- For treatment of mild/moderate COVID
 - Not requiring hospitalization
 - At high risk for progression to severe COVID
- Should NOT be withheld from pregnant patients at high risk

REGENERON SCIENCE TO MEDICINE®

(regeneron.com, n.d.)

Monoclonal Antibodies

• High Risk Conditions:

- Body Mass Index (BMI) \geq 35
- Chronic kidney disease (CKD)
- Diabetes mellitus (DM)
- Immunosuppressive disease
- ≥ 65
- ≥ 55 years and have cardiovascular disease (CVD) or hypertension (HTN) or chronic obstructive pulmonary disease (COPD)

- High Risk Pediatric conditions:
 - Age 12-17 with...
 - BMI > 85%
 - Hemoglobin sickle cell (Hgb SS) diagnosis
 - Congenital or acquired heart disease
 - Neurodevelopmental disorders
 - Medical-related technological dependence
 - Asthma requiring daily medication

Monoclonal Antibodies

- Benefit has not been observed in patients hospitalized
- May be associated with worse outcomes in hospitalized patients requiring high-flow nasal cannula (HFNC) or mechanical ventilation
- Not authorized for ...
 - Hospitalized due to COVID-19
 - Require O2 due to COVID-19
 - Require an increased in baseline O2 for those on chronic supplemental O2

Stages of Disease

Corticosteroids

- Corticosteroids have potent anti-inflammatory effects
- Steroids have decreased mortality in other respiratory diseases (PCP), however were associated with delayed viral clearance in Middle East respiratory syndrome (MERS) and SARS
- Corticosteroids have also been shown to decrease all cause mortality and length of mechanical ventilation in ARDS patients

RECOVERY Trial

- National Health Services (NHS) study
- Ongoing, multicentre, open label study
- 6400 patients (2100- dexamethasone; 4300standard care)
- Primary endpoint
 - All cause mortality at 28 days after randomization
- Secondary endpoints- not yet reported
 - Time to hospital discharge
 - Cause specific mortality
 - Need for renal replacement
 - Major cardiac arrhythmia
 - Receipt and duration of mechanical ventilation

RECOVERY Trial Results

- Dexamethasone decreased mortality at 28-days
 - 22.9% vs 25.7%; RR 0.82; 95% Cl, 0.75-0.94
- Benefit was greatest in those who required mechanical ventilation
 - 29.3% vs 41.3%; RR 0.82; 95% CI, 0.51-0.81
- Mortality was decreased among those who required supplemental O2
 - 23.3% vs 26.2%; RR 0.82; 95% Cl, 0.72-0.94
- There was no survival benefit in those who didn't require O2
 - 17.8% vs 14.0%; RR 1.19; 95% Cl, 0.91-1.55

World Health Organization (WHO) Meta-analysis

- 7 studies including 1700 critically ill patients
 - 678 received corticosteroids
 - 1000 received standard care
- Mortality was decreased with corticosteroids
 - 32.7% vs 41.5%; OR 0.66; 95% Cl, 0.53-0.82
 - Dexamethasone: 1200 patients; OR 0.64; 95% Cl, 0.50-0.82
 - Hydrocortisone: 374 patients; OR 0.69; 95% Cl, 0.42-1.12
 - Methylprednisolone: 47 patients; OR 0.91; 95% Cl, 0.29-2.87

WHO Meta-analysis of Corticosteroids

Limitations

- Trials varied in many ways-
- RECOVERY Trial accounted for 60% of patients
 - Several studies ended enrollment after RECOVERY preliminary report was released
- Not all studies required confirmed SARS-CoV-2 infection
 - RECOVERY Trial had approximately 89% confirmed SARS-CoV-2

Results are likely driven primarily by the results of RECOVERY Trial

Corticosteroids for Fetal Lung Maturity

- Corticosteroids for fetal lung maturity should be considered for all women admitted to the ICU and women deemed to be high risk for preterm delivery (PTD)
- In women receiving Dexamethasone for treatment of COVID-19
 - Give 6 mg twice a day (BID) x 4 doses (2 days)
 - ...then, 6 mg qday x 8 doses to complete 10-day course
- Benefit from late preterm steroids (34w0d 36w6d) may not outweigh potential risk of worsening pulmonary status or increased viral shedding in patient not otherwise on dexamethasone

DISEASE SEVERITY	PANEL'S RECOMMENDATIONS
Not Hospitalized, Mild to Moderate COVID-19	There are insufficient data to recommend either for or against any specific antiviral or antibody therapy. SARS-CoV-2 neutralizing antibodies (bamlanivimab or casirivimab plus imdevimab) are available through EUAs for outpatients who are at high risk of disease progression. ^a These EUAs do not authorize use in hospitalized patients.
	Dexamethasone should not be used (AIII).
Hospitalized ^a But Does Not Require Supplemental Oxygen	Dexamethasone should not be used (Alla) . There are insufficient data to recommend either for or against the routine use of remdesivir . For patients at high risk of disease progression, the use of remdesivir may be appropriate.
Hospitalized [*] and Requires Supplemental Oxygen (But Does Not Require Oxygen Delivery Through a High-Flow Device, Noninvasive Ventilation, Invasive Mechanical Ventilation, or ECMO)	 Use one of the following options: Remdesivir^{b,c} (e.g., for patients who require minimal supplemental oxygen) (Blla) Dexamethasone^d plus remdesivir^{b,c} (e.g., for patients who require increasing amounts of supplemental oxygen) (Bll)^{e,f} Dexamethasone^d (e.g., when combination therapy with remdesivir cannot be used or is not available) (Bl)
Hospitalized ^a and Requires Oxygen Delivery Through a High-Flow Device or Noninvasive Ventilation	Use one of the following options: • Dexamethasone ^{d,f} (AI) • Dexamethasone ^d plus remdesivir ^{b,a} (BIII) ^{e,f}
Hospitalized ^a and Requires Invasive Mechanical Ventilation or ECMO	Dexamethasoned (AI) ^a
Rating of Recommendations: A = Strong; B = Mode Rating of Evidence: I = One or more randomized trial randomized trials; IIb = Nonrandomized trials or obset	erate; C = Optional Is without major limitations; IIa = Other randomized trials or subgroup analyses of rvational cohort studies; III = Expert opinion

CDC COVID Treatment Guidelines

(NIH.gov, 2021)

Interferons (IFNs)/Interleukins

- IFNs are naturally occurring cytokines (proteins) with antiviral properties
 - Prior studies with SARS/MERS showed no effect
 - British biotech reported 79% decrease in development of severe COVID after treatment with inhaled IFN beta 1-a
- Interleukins are inflammatory cytokines elevated in COVID
 - IL-1 (Anakinra) and IL-6 (Tocilizumab et al) inhibitors have been studied, but have not shown efficacy.

COVID & Venous Thromboembolism (VTE)

What is the risk? What is happening?

Pathophysiology

COVID & VTE

- Leads to increased risk of VTE
 - Similar increased risk of VTE was seen in SARS, but not MERS
- Huge amount of current ongoing research
 - Meta-analysis included 66 studies
- Suggested pathomechanisms
- High prevalence of deep vein thrombosis (DVT) (up to 90%) leads to high prevalence of pulmonary embolism (PE)
 - Diffuse alveolar and vascular damage, microangiopathy and inflammation leads to in situ pulmonary thrombi

COVID & VTE

First Author	Sample	Outcome	Setting	E	S (95% CI)	% Weight
NO SCREENING	382	DVT	hospitalized	i i	0.0 (0.0 1.0)	1.66
Koleilat, I.	3404	DVT	hospitalized		0.5 (0.3, 0.8)	1.71
Mattioli, M.	105	VTE	hospitalized (10% ICU)	£– (1.0 (0.2, 5.2)	1.54
Tremblay, D.	3772	VTE	54% hospitalized (14% mech. vent.), 46% outpatients		1.2 (0.9, 1.6)	1.71
Wang, Y.	233	VTE	hospitalized	- I	1.7 (0.7, 4.3)	1.63
Hanif, A.	921	VTE	hospitalized (35% mech. vent.)		1.7 (1.1, 2.8)	1.69
Mei, F.	256	VTE	hospitalized (18% ICU)		2.0 (0.8, 4.5)	1.64
Beigel, J.	1063	VTE	hospitalized (26% mech. vent/ECMO)		2.0 (1.3, 3.0)	1.69
Betoule, A.	76	PE	emergency dep. (80% hospitalized, 20% ICU)		2.6 (0.7, 9.1)	1.48
Pesavento R	324	VTE	hospitalized		2.7 (0.6, 5.3)	1.65
Galeano-Valle, F.	785	VTE	hospitalized		3.1 (2.1.4.5)	1.69
Goyal, P.	393	VTE	hospitalized (33% mech. vent.)		3.3 (1.9, 5.6)	1.66
Moll, M.	210	VTE	hospitalized (49% ICU)	÷ 1	4.3 (2.3, 7.9)	1.62
Lodigiani, C.	362	VTE	hospitalized (13% ICU)	÷ 1	4.4 (2.7, 7.1)	1.66
Dubois-Silva, Á.	171	PE	hospitalized		4.7 (2.4, 9.0)	1.60
Fauvel, C.	2878	VTE	hospitalized (19% ICU)		4.9 (4.1, 5.7)	1.70
Whyte, M.	1477	PE	hospitalized (15% ICU)		5.4 (4.4, 6.7)	1.70
Al-Samkari, H.	400	VIE	hospitalized (36% critical)	<u> </u>	5.5 (3.7, 0.2)	1.00
Predi, M. Rieder M	49	VIE	R2% hospitalized (16% ICU)		6 1 (2 1 16 5)	1 38
Patell, R.	398	VTE	hospitalized (52% ICU)		63(43.91)	1.66
Mestre-Gómez, B.	452	PE	hospitalized	÷ :	6.4 (4.5, 9.1)	1.67
Bilaloglu, S.	3334	VTE	hospitalized (25% ICU)		7.0 (6.2, 8.0)	1.71
Berger, J.	2377	VTE	hospitalized (26% mech. vent.)	• •	7.2 (6.2, 8.3)	1.70
Stoneham, S.M.	274	VTE	hospitalized		7.7 (5.1, 11.4)	1.64
Campochiaro, C.	65	PE	hospitalized		7.7 (3.3, 16.8)	1.45
Lendorf, M.	111	PE	hospitalized (18% ICU)		8.1 (4.3, 14.7)	1.55
Grillet, F.	280	PE	hospitalized (14% ICU)		8.2 (5.5, 12.0)	1.64
Inomas, w.	63	VIE	ICU heavitalized		9.5 (4.4, 19.3)	1.44
Gatto M	100	VIE	43% hospitalized 57% outpatients		2.1 (7.1, 20.0)	1.53
Deshorough M.LB	66	VTE	ICU		5.2 (8.4. 25.7)	1.30
Huet, T.	96	VTE	hospitalized		5.6 (9.7, 24.2)	1.52
Taccone, F.	82	PE	ICU	1	5.9 (9.5, 25.3)	1.49
Trimaille, A.	289	VTE	hospitalized	17	.0 (13.1, 21.7)	1.64
Tavazzi, G.	54	VTE	ICU	18	.5 (10.4, 30.8)	1.40
Helms, J.	150	VTE	ICU	18	.7 (13.2, 25.7)	1.59
Larsen, K.	35	VTE	hospitalized	20	.0 (10.0, 35.9)	1.28
Soumagne, T.	375	VIE		21	.1 (17.2, 25.5)	1.66
Zermatten, M.	107	VIE			.0 (15.0, 31.1)	1.53
Spieza L	22	DVT		22	(15.0, 51.2)	1.04
Cui. S.	81	DVT	ICU	24	7 (16.6, 35.1)	1.49
Wright, F.L.	44	VTE	ICU	25	0 (14.6, 39.4)	1.35
Hippensteel, J.	91	VTE	ICU		4 (18.4, 36.3)	1.51
Faggiano, P.	25	VTE	hospitalized	28	.0 (14.3, 47.6)	1.16
Maatman, T.K.	109	VTE	ICU	28	.4 (20.8, 37.5)	1.54
Beun, R.	75	VTE	ICU	30	.7 (21.4, 41.8)	1.48
Fraissé, M.	92	VTE	ICU	333	.7 (24.9, 43.8)	1.52
Aleva, F.E.	50	VTE		36	.0 (24.1, 49.9)	1.38
NIOK, F.A.	104 fies without u	VIE	ICU	37	0 (30.3, 44.1)	1.01
Gooden estimate: Stu	nea without u	masounu scre	annig (r. = au. 478)	~	0.0 (7.0, 11.7)	00.00
SCHEENING	024	DUCT	beenlalized (00% ICL)		07/72 15 0	1.62
santoliquido A	234	DVT	hospitalized (20% IGU)		1.0 (6.6, 20.5)	1.03
Middeldorp S	198	VTE	hospitalized (38% ICH) screening: 28%		7 (14 8 25 8)	1.61
Zerwes, S.	20	VTE	ICU	2	0.0 (8.1, 41.6)	1.08
Le Jeune, S.	42	VTE	hospitalized	26	.2 (15.3, 41.1)	1.34
Pizzolo, F.	43	DVT	hospitalized	27	.9 (16.7, 42.7)	1.34
Longchamp, A.	25	VTE	ICU	32	.0 (17.2, 51.6)	1.16
Grandmaison, G.	58	VTE	hospitalized (50% ICU)	39	.7 (28.1, 52.5)	1.42
Voicu, S.	56	DVT	ICU	46	.4 (34.0, 59.3)	1.41
Znang, L.	143	VIE	nospitalized	46	.9 (38.9, 55.0)	1.58
Mazzaccaro, D.	32	VIE	ICI	60	2 (50 0 83 5)	1.20
Nahum J.	34	DVT	ICU		4 (63.2, 89.7)	1.27
Ren, B.	48	DVT	ICU	85	4 (72.8, 92.8)	1.37
Subtotal estimate: Stud	lies with ultra	sound screeni	ng (l ² = 94.7%)	40	.3 (27.0, 54.3)	19.15
Overall estimate (I ² = 9	97.1%)			14	.1 (11.6, 16.9)	
					(,	
				0 10 20 30 40 50 60 70 80 90 100		
				Prevalence of VTE (%)		

14% overall prevalence of VTE in hospitalized COVID-19 patients

9% prevalence of VTE in UNSCREENED populations

40% prevalence of VTE in SCREENED populations

(Nopp et al., 2020)

ICU Patients

Venous thromboembolism (VTE)

Pulmonary embolism (PE)

Deep vein thrombosis (DVT)

Study		ES (95% CI)	% Weight	n	Study		ES (95% CI)	% Weight	n	:	Study		ES (95% CI)	% Weight	n
NO SCREENING Mei, F. Goyal, P. Lodigiani, C. Moll, M. Thomas, W. Al-Samkari, H. Desborough, M.J.R Bilaloglu, S. Tavazzi, G. Helms, J. Soumagne, T. Zermatten, M. Poissy, J. Rieder, M. Wright, F.L. Hippensteel, J. Maatman, T.K. Fraissé, M. Aleva, F.E. Klok, F.A. Subtotal SCREENING Zerwes, S. Longchamp, A. Middeldorp, S. Grandmaison, G. Llitjos, JF. Subtotal		6.7 (2.3, 17.9) 7.7 (4.2, 13.6) 8.3 (3.3, 19.6) 8.8 (4.7, 15.9) 9.5 (4.4, 19.3) 10.4 (6.4, 16.5) 15.2 (8.4, 25.7) 15.7 (13.4, 18.3) 18.5 (10.4, 30.8) 18.7 (13.2, 25.7) 21.1 (17.2, 25.5) 22.0 (15.0, 31.1) 25.0 (7.1, 59.1) 25.0 (74.6, 39.4) 26.4 (18.4, 36.3) 28.4 (20.8, 37.5) 33.7 (24.9, 43.8) 36.0 (24.1, 49.9) 37.0 (30.3, 44.1) 18.7 (14.9, 22.9) 20.0 (8.1, 41.6) 32.0 (17.2, 51.6) 46.7 (35.8, 57.8) 58.6 (40.7, 74.5) 69.2 (50.0, 83.5) 45.6 (30.6, 61.1) 22.7 (18.1, 27.6)	3.75 4.52 3.81 4.39 4.05 4.57 4.09 4.97 3.92 4.58 4.86 4.38 4.41 1.76 3.73 4.32 4.43 4.32 4.43 4.32 4.43 4.32 3.85 4.67 83.39 2.85 3.12 4.19 3.29 3.16 16.61 100.00	45 130 48 102 63 144 66 829 54 150 375 100 107 8 44 91 109 92 50 184 20 25 75 29 26	Wright, F.L. Tavazzi, G. Lodigiani, C. Maatman, T.K. Zerwes, S. Hippensteel, J. Bilaloglu, S. Moll, M. Grandmaison, G. Desborough, M.J.I Thomas, W. Middeldorp, S. Soumagne, T. Zermatten, M. Taccone, F. Whyte, M. Helms, J. Longchamp, A. Poissy, J. Llitjos, JF. Rieder, M. Lendorf, M. Aleva, F.E. Beun, R. Fraissé, M. Klok, F.A. Grillet, F. Overall (l ² =87.6%)	╶ ╶ ╶ ╶ · · · · · · · · · ·	0.0 (0.0, 8.0) 3.7 (0.5, 12.7) 4.2 (0.5, 14.3) 4.6 (1.5, 10.4) 5.0 (0.1, 24.9) 5.5 (1.8, 12.4) 6.3 (4.7, 8.1) 6.9 (0.8, 22.8) 7.6 (2.5, 16.8) 7.9 (2.6, 17.6) 14.7 (7.6, 24.7) 14.7 (11.2, 18.7) 15.0 (8.6, 23.5) 15.9 (8.7, 25.6) 16.2 (11.6, 21.7) 16.7 (11.1, 23.6) 20.0 (6.8, 40.7) 20.6 (13.4, 29.5) 23.1 (9.0, 43.6) 25.0 (3.2, 65.1) 25.0 (8.7, 49.1) 26.0 (14.6, 40.3) 26.7 (17.1, 38.1) 27.2 (18.4, 37.4) 35.3 (28.4, 42.7) 43.6 (27.8, 60.4) 13.7 (10.0, 17.9)	3.51 3.68 3.58 4.13 2.71 4.03 4.61 4.09 3.11 3.83 3.91 9.4.52 4.08 3.97 9.4.27 2.95 9.4.12 2.99 1.69 2.711 3.62 3.91 4.04 3.40 100.00	44 54 48 109 20 91 829 102 29 66 63 75 375 100 82 222 150 25 107 26 8 20 50 75 92 184 39		NO SCREENING Thomas, W. Klok, F.A. Moll, M. Helms, J. Aleva, F.E. Beun, R. Lodigiani, C. Poissy, J. Zermatten, M. Desborough, M.J.R. Soumagne, T. Bilaloglu, S. Fraissé, M. Tavazzi, G. Hippensteel, J. Spieza, L. Cui, S. Wright, F.L. Maatman, T.K. Subtotal SCREENING Ierardi, A. Zerwes, S. Longchamp, A. Middeldorp, S. Volcu, S. Grandmaison, G. Littjos, JF. Nahum, J. Ren, B. Subtotal Overall (I ² =94.6%)		$\begin{array}{c} 1.6 \ (0.0, 8.5) \\ 1.6 \ (0.3, 4.7) \\ 2.0 \ (0.2, 6.9) \\ 2.0 \ (0.4, 5.7) \\ 2.0 \ (0.4, 5.7) \\ 2.0 \ (0.1, 10.6) \\ 4.0 \ (0.8, 11.2) \\ 4.2 \ (0.5, 14.3) \\ 4.7 \ (1.5, 10.6) \\ 7.0 \ (2.9, 13.9) \\ 9.1 \ (3.4, 18.7) \\ 9.3 \ (6.6, 12.7) \\ 9.4 \ (7.5, 11.6) \\ 13.0 \ (6.9, 21.7) \\ 14.8 \ (6.6, 27.1) \\ 20.9 \ (13.1, 30.7) \\ 22.7 \ (7.8, 45.4) \\ 24.7 \ (15.8, 35.5) \\ 25.0 \ (13.2, 40.3) \\ 27.5 \ (19.4, 36.9) \\ 8.9 \ (5.8, 12.4) \\ \end{array}$	3,61 3,82 3,73 3,54 3,56 3,52 3,54 3,52 3,52 3,52 3,52 3,56 3,70 3,14 3,56 3,70 3,14 3,56 3,70 3,14 3,56 3,70 3,14 3,56 3,74 69,54 3,57 3,50 3,66 3,57 3,50 3,66 3,57 3,50 3,54 3,52 3,52 3,66 3,52 3,52 3,52 3,74 4,55 4,55 4,55 4,55 4,55 4,55 4,55 4	63 184 102 50 75 48 107 66 375 829 92 54 91 22 81 44 109 46 20 25 75 56 29 26 34 48
	0 10 20 30 40 50 60 70 80 90 1 Prevalence of VTE (%)	1 100)				0 10 20 30 40 50 60 70 80 90 ° Prevalence of PE (%)	100			-		0 10 20 30 40 50 60 70 80 90 Prevalence of DVT (9	100 6)		

In ICU Patients, overall prevalence of VTE was 22%, PE was 14% and DVT was 19%

Using routine screening protocols, prevalence of VTE and DVT can be as high as 45-50%

(Nopp et al., 2020)

Non-ICU Patients

Study ES (95% CI) Weight n NO SCREENING Moll, M. 0.0 (0.0, 3.4) 4.39 108 Mei, F. 0.9 (0.1, 3.4) 4.69 211 Goyal, P. 1.1 (0.2, 3.3) 4.75 263 Wang, Y. 2.0 (1.2, 3.0) 4.97 1063 Al-Samkari, H. 2.7 (1.1, 5.6) 4.75 256 Pesavento, R. 2.8 (1.3, 5.2) 4.81 324 Galeano-Valle, F. 3.1 (2.0, 4.5) 4.95 785 Rieder, M. 3.1 (0.1, 16.2) 3.37 32 Lodigiani, C. 3.8 (2.0, 6.6) 4.80 314 Bilaloglu, S. 4.2 (3.4, 5.1) 5.02 2505	Study ES (95% CI) % Moll, M. 0.0 (0.0, 3.4) 4.17 108 Pesavento, R. 0.3 (0.0, 1.7) 5.14 324 Beigel, J. 0.6 (0.2, 1.2) 5.59 1063 Zhang, L. 0.7 (0.0, 3.8) 4.48 143 Wang, Y. 0.9 (0.1, 3.1) 4.91 233 Middeldorp, S. 1.6 (0.2, 5.8) 4.32 123 Stoneham, S.M. 1.8 (0.6, 4.2) 5.03 274	Study ES (95% Cl) Weight n NO SCREENING Moll, M. 0.0 (0.0, 3.4) 4.56 108 Cattaneo, M. 0.0 (0.0, 0.9) 5.22 388 Koleilat, I. 0.5 (0.3, 0.8) 5.50 3404 Wang, Y. 0.9 (0.1, 3.1) 5.04 233 Fredi, M. 1.1 (0.0, 6.2) 4.39 88 Lodigiani, C. 1.3 (0.3, 3.2) 5.15 314
NO SCREENING 0.0 (0.0, 3.4) 4.39 108 Moli, M. 0.9 (0.1, 3.4) 4.69 211 Goyal, P. 1.1 (0.2, 3.3) 4.75 263 Wang, Y. 1.7 (0.5, 4.3) 4.72 233 Beigel, J. 2.0 (1.2, 3.0) 4.97 1063 Al-Samkari, H. 2.7 (1.1, 5.6) 4.75 256 Pesavento, R. 2.8 (1.3, 5.2) 4.81 324 Galeano-Valle, F. 3.1 (2.0, 4.5) 4.95 785 55 Rieder, M. 3.1 (0.1, 16.2) 3.37 32 50 Lodigiani, C. 3.8 (2.0, 6.6) 4.80 314 50 Bialoglu, S. 4.2 (3.4, 5.1) 5.02 2505	Moll, M. 0.0 (0.0, 3.4) 4.17 108 Pesavento, R. 0.3 (0.0, 1.7) 5.14 324 Beigel, J. 0.6 (0.2, 1.2) 5.59 1063 Zhang, L. 0.7 (0.0, 3.8) 4.48 143 Wang, Y. 0.9 (0.1, 3.1) 4.91 233 Middeldorp, S. 1.6 (0.2, 5.8) 4.32 123 Stoneham, S.M. 1.8 (0.6, 4.2) 5.03 274	NO SCREENING 0.0 (0.0, 3.4) 4.56 108 Moll, M. 0.0 (0.0, 0.9) 5.22 388 Koleilat, I. 0.5 (0.3, 0.8) 5.50 3404 Wang, Y. 0.9 (0.1, 3.1) 5.04 233 Fredi, M. 1.1 (0.0, 6.2) 4.39 88 Lodigiani, C. 1.3 (0.3, 3.2) 5.15 314
Fredi, M. 5.7 (1.9, 12.8) 4.27 88 Stoneham, S.M. Inciardi, R.M. 12.1 (6.4, 20.2) 4.34 99 Huet, T. 15.6 (9.0, 24.5) 4.32 96 Trimaille, A. 20.0 (8.4, 36.9) 3.46 35 Larsen, K. 28.0 (12.1, 49.4) 3.08 25 Gatto, M. 32.1 (19.9, 46.3) 3.87 53 Subtotal 5.5 (3.6, 7.9) 84.10 64 SCREENING 31.0 (17.6, 47.1) 3.65 42 Middeldorp, S. 31.0 (17.6, 47.1) 3.65 42 Zhang, L. Subtotal 23.0 (32, 52.5) 15.90 64 Overall (I ² =94.6%) 7.9 (5.1, 11.2) 100.00 64	Galeano-Valle, F. 1.9 (1.1, 3.1) 5.51 785 Bilaloglu, S. 2.2 (1.6, 2.8) 5.71 2505 Grillet, F. 2.5 (0.9, 5.3) 4.94 241 Lodigiani, C. 2.5 (1.1, 5.0) 5.12 314 Whyte, M. 3.5 (2.6, 4.7) 5.62 1255 Lendorf, M. 4.4 (1.2, 10.9) 3.96 91 Fredi, M. 4.5 (1.3, 11.2) 3.92 88 Dubois-Silva, Á. 4.7 (2.0, 9.0) 4.65 171 Mestre-Gómez, B 6.4 (4.3, 9.1) 5.31 452 Grandmaison, G. 7.7 (2.5, 17.0) 3.52 65 Le Jeune, S. 9.5 (2.7, 22.6) 2.90 42 Larsen, K. 14.3 (4.8, 30.3) 2.64 35 Trimaille, A. 9.5 (2.7, 22.6) 2.90 42 Pizzolo, F. 20.9 (10.0, 36.0) 2.93 43 Faggiano, P. 28.0 (12.1, 49.4) 2.17 25 Overall (l²=88.9%) 3.5 (2.2, 5.1) 100.00 100.00	Galeano-Valle, F. 1.7 (0.9, 2.8) 5.38 785 Bilaloglu, S. 2.0 (1.5, 2.7) 5.48 2505 Pesavento, R. 2.5 (1.1, 4.8) 5.17 324 Trimaille, A. 4.2 (2.2, 7.1) 5.12 289 Larsen, K. 5.7 (0.7, 19.2) 3.35 35 Stoneham, S.M. 5.8 (3.4, 9.3) 5.10 274 Faggjano, P. 8.0 (1.0, 26.0) 2.90 25 Subtotal 1.4 (0.7, 2.3) 67.78 SCREENING 1.6 (0.2, 5.8) 4.66 123 Middeldorp, S. 3.1 (0.1, 16.2) 3.23 32 Pizzolo, F. 7.0 (1.5, 19.1) 3.61 43 Ierardi, A. 8.5 (4.9, 13.5) 4.93 188 Santoliquido, A. 4.4 4.2 (37.8, 54.7) 4.77 143 Le Jeune, S. Grandmaison, G. 20.7 (8.0, 39.7) 3.10 29 Zhang, L. Verrall (l ² =94.6%) 4.1 (2.3, 6.4) 100.00

In non-ICU Patients, overall prevalence of VTE was 8%, PE was 3.5% and DVT was 4%

(Nopp et al., 2020)

VTE Prophylaxis in COVID

- Mortality at 14-22 days was similar between VTE ppx and intermediate/therapeutic dosing
- PE was reduced from 98/1,000 → 10/1,000; OR 0.09
- Incidence of DVT or VTE were not significantly reduced
- Major bleeding increased from 84/1,000 \rightarrow 260/1,000; OR 3.84

...suggests using **prophylactic-intensity over intermediate-intensity or therapeutic-intensity anticoagulation** in patients with COVID-19 related critical illness who do not have suspected or confirmed VTE...

VTE Prophylaxis in COVID

- Caveats:
 - An individualized assessment of the patients risk of thrombosis and bleeding is important
 - Unfractionated heparin (UFH) may be preferred over low-molecular-weight heparin (LMWH) due to ability to reverse if needed for delivery
 - LWMH may be preferred for patients receiving prophylaxis (ppx) anticoagulation due to decreased provider interaction
 - Higher intensity anti-coagulation may be preferred in patients at high thrombotic risk and low bleeding risk
 - There is no high-quality evidence comparing different types of anticoagulation
ICU Considerations

HELLO, MAN Don't want to BE HERE

Key Points

- Many Obstetric providers are uncomfortable in an ICU setting
- Many Intensivists have limited experience caring for pregnant/postpartum women....
- ...and are therefore uncomfortable caring for a pregnant woman
- Both of you have knowledge that is needed to adequately care for a critically ill woman

Maternal Adaptations to Pregnancy

- In pregnancy, nearly every system undergoes adaptation
- Clearly discuss normal and abnormal physiology
- Don't assume anything is common knowledge

Increased	Plasma volume by 40 to 50 percent, but erythrocyte volume by only 20 percent	Dilutional anemia results in decreased oxygen carrying capacity	
	Cardiac output by 40 percent	Increased CPR circulation demands	
	Heart rate by 15 to 20 beats per minute	Increased CPR circulation demands	
	Clotting factors susceptible to thromboembolism		
	Dextrorotation of the heart	Increased EKG left axis deviation	
	Estrogen effect on myocardial receptors	Supraventricular arrhythmias	
Decreased	Supine blood pressure and venous return with aortocaval compression	Decreases cardiac output by 30 percent	
	Arterial blood pressure by 10 to 15 mm Hg	Susceptible to cardiovascular insult	
	Systemic vascular resistance	Sequesters blood during CPR	
	Colloid oncotic pressure (COP)	Susceptible to third spacing	
	Pulmonary capillary wedge pressure (PCWP)	Susceptible to pulmonary edema	
	Respiratory	Effect	
Increased	Respiratory rate (progesterone-mediated)	Decreased buffering capacity	
	Oxygen consumption by 20 percent	Rapid decrease of PaO ₂ in hypoxia	
	Tidal volume (progesterone-mediated)	Decreased buffering capacity	
	Minute ventilation	Compensated respiratory alkalosis	
	Laryngeal angle	Failed intubation	
	Pharyngeal edema	Failed intubation	
	Nasal edema	Difficult nasal intubation	
Decreased	Functional residual capacity by 25 percent	Decreases ventilatory capacity	
	Arterial PCO ₂	Decreases buffering capacity	
	Serum bicarbonate	Compensated respiratory alkalosis	
	Gastrointestinal	Effect	
Increased	Intestinal compartmentalization	Susceptible to penetrating injury	
Decreased	Peristalsis, gastric motility	Aspiration of gastric contents	
	Gastroesophageal sphincter tone	Aspiration of gastric contents	
	Uteroplacental	Effect	
Increased	Uteroplacental blood flow by 30 percent of cardiac output	Sequesters blood in CPR	
	Aortocaval compression	Decreases cardiac output by 30 percent	
	Elevation of diaphragm by 4 to 7 cm	Aspiration of gastric contents	
Decreased	Autoregulation of blood pressure	Uterine perfusion decreases with drop in maternal blood pressure	

	Nonpregnant State	Pregnancy State	
ABG Measurement		First Trimester	Third Trimester
pН	7.40	7.42-7.46	7.43
Pao ₂ (mm Hg)	93	105-106	101-106
$Paco_2$ (mm Hg)	37	28-29	26-30
Serum HCO ₃ (mEq/L)	23	18	17

Abbreviation: ABG, arterial blood gas

Reprinted from Hegewald MJ, Crapo RO. Respiratory physiology in pregnancy. Clin Chest Med 2011;32: 1–13.

"Normal" PaCO2 in pregnancy represents impending respiratory failure

Presence of any of the following:

- Inability to maintain oxygen saturation ≥95% (pulse oximetry) with supplemental oxygen/rapidly escalating supplemental oxygen need.
- Hypotension (mean arterial pressure MAP <65) despite appropriate fluid resuscitation (~500-1000 mL bolus of crystalloid fluids, eg, lactated Ringer's solution).
 - For patients with COVID-19 in acute resuscitation, a conservative fluid strategy should be considered to avoid concomitant fluid overload and worsening pulmonary edema.
 - Further, we recommend judicious fluid administration and starting maintenance intravenous fluids in the setting of clear hypovolemia and NPO status.
- Evidence of new end-organ dysfunction (eg, altered mental status, renal insufficiency, hepatic insufficiency, cardiac dysfunction, etc.).

Indications for Intensive Care

- Inability to maintain Sp02 > 95%
- Hypotension despite resuscitation
- New onset end organ damage

(Society for Maternal Fetal Medicine, 2021)

Clinical Ward

Low Tidal Volume Ventilation

- Tidal volume (VT) 4-6 mL/kg of predicted BW
 - Plateau pressure (Pplat) < 30 cc H2O
 - Positive end-expiratory pressure (PEEP) adjusted as needed
- Standard of care for non-pregnant ARDS patients
 - ARDSNET study showed mortality benefit
 - Decreases barotrauma
 - Decreases inflammatory activation
- Permissive Hypercapnia
 - pH 7.35, PaCO2 > 45 mmHg well tolerated
 - Not studied in pregnancy
 - Sheep studies have shown decreased uteroplacental blood flow if PaCO2 > 60 mmHg

(stock.adobe, n.d.)

Low Tidal Volume Ventilation (LTVV)

- Options if LTVV fails...
 - Prone positioning
 - Neuromuscular blockade
 - Pulmonary vasodilators [i.e. inhaled Nitric Oxide (iNO)]
 - Alternative ventilatory modes
 - Airway pressure release ventilation (APRV) may be better option in pregnancy
 - ECMO
- Low VT strategies are reasonable
- If Low VT fails, APRV may be better option than high VT strategies

(Biomedcentral.com, n.d.)

Low Tidal Volume Ventilation is reasonable in pregnant women with ARDS

Other Considerations

- Analgesia
 - All opioids are acceptable
- Sedation
 - Most benzodiazepines (BDZ) are appropriate
 - Propofol is acceptable, but...
 - Propofol infusion syndrome may occur faster than in non-pregnant women
 - Data is limited for dexmedetomidine, but likely ok
- Pulmonary vasodilators (iNO, inhaled prostacyclins)
 - Considered salvage therapy in refractory hypoxemia
 - Do not decease ventilator free days, ICU stay or mortality, but may improve oxygenation
 - Length of benefit may be temporary
 - Limited data in pregnancy, but can be trialed if needed

- Neuromuscular blockade
 - NMB has shown benefit in mod/severe ARDS
 - Limited data in pregnancy
 - Acceptable if needed
- Vasopressors-
 - Limited data, but essentially mirrors Surviving Sepsis guidelines
 - Norepinephrine generally considered 1st line
 - Phenylephrine 2nd line
 - All acceptable if needed

Learning Objectives

- 1. Describe the CDC recommendations for the use of remdesivir in treating COVID-19
- 2. Explain the CDC recommendations for the use of dexamethasone in treating COVID-19
- 3. Comprehend and apply the appropriate escalation of supplemental oxygen in patients with COVID-19
- 4. Recognize indications for escalation of care to the ICU for patients with COVID-19

Key Takeaways

- The CDC recommends giving remdesivir to hospitalized COVID-19 patients on supplemental O2, but not requiring high flow supplemental oxygen or mechanical ventilation
- The CDC recommends giving dexamethasone to hospitalized COVID-19 patients who require supplemental O2, high flow supplemental oxygen or mechanical ventilation
- The appropriate escalation of therapy for hypoxemia is room air → nasal cannula → high flow oxygen device → mechanical ventilation → ECMO. Therapy should be escalated until ventilation is sufficient to maintain a PaO2 of > 70 mmHg (~SpO2 95%) for pregnant patients.
- Indications for transfer to the ICU include an inability to maintain PaO2 > 70 mmHg, hypotension despite adequate ventilation or any sign of other end organ dysfunction

Figure 2: Algorithm for Refractory hypoxemia

Questions?

American College of Obstetricians and Gynecologists. (n.d.). Healthcare providers should immediately notify their local or state health department in the event of a PUI

for COVID-19 and should contact and consult with their local and/or state health department for recommendations on testing PUIs for COVID-19.

Elevated Risk. <u>https://www.acog.org/-/media/project/acog/acogorg/files/pdfs/clinical-guidance/practice-advisory/covid-19-algorithm.pdf</u>

American Society of Hematology. (2020). Should DOACs, LMWH, UFH, Fondaparinux, Argatroban, or Bivalirudin at intermediate-intensity or therapeutic-intensity vs.

Prophylactic intensity be used for Patients with COVID-19 related critical illness who do not have suspected or confirmed VTE?

https://guidelines.ash.gradepro.org/profile/3CQ7J0SWt58

Beigel, J. H., Tomashek, K. M., Dodd, L. E., et al. (2020). Remdesivir for the Treatment of Covid-19 — Preliminary Report. New England Journal of Medicine, 383(19),

1813-1826. https://doi.org/10.1056/nejmoa2007764

Burwick, R. M., Yawetz, S., Stephenson, K. E., et al. (2020). Compassionate Use of Remdesivir in Pregnant Women With Severe Coronavirus Disease 2019. Clinical

Infectious Diseases. https://doi.org/10.1093/cid/ciaa1466

Centers for Disease Control and Prevention. (2020, February 11). Cases, Data, and Surveillance. Centers for Disease Control and Prevention.

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/10232020/nchs-mortality-report.htm

Creanga, A. A., Kamimoto, L., Newsome, et al. (2011). Seasonal and 2009 pandemic influenza A (H1N1) virus infection during pregnancy: a population-based study of

hospitalized cases. American Journal of Obstetrics and Gynecology, 204(6), S38–S45. https://doi.org/10.1016/j.ajog.2011.02.037

Dennis, A. T., Hardy, L., & Leeton, L. (2018). The prone position in healthy pregnant women and in women with preeclampsia – a pilot study. BMC Pregnancy and

Childbirth, 18(1). https://doi.org/10.1186/s12884-018-2073-x

Goldman, J. D., Lye, D. C. B., Hui, D. S., et al. (2020). Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. *New England Journal of Medicine, 383*(19), 1827-1837. https://doi.org/10.1056/nejmoa2015301

Gupta, A., Madhavan, M. V., Sehgal, K., et al. (2020). Extrapulmonary manifestations of COVID-19. Nature Medicine, 26(7), 1017–1032.

https://doi.org/10.1038/s41591-020-0968-3

Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., & Duan, G. (2020). Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses, 12(4), 372.

https://doi.org/10.3390/v12040372

Johns Hopkins University and Medicine. (2021). NEW CASES OF COVID-19 IN WORLD COUNTRIES. https://coronavirus.jhu.edu/data/new-cases

Joyner, M. J., Bruno, K. A., Klassen, S. A., et al. (2020). COVID-19 Convalescent Plasma in 20,000 Hospitalized Patients. *Mayo Clin Proc, (95)*9, 1888-1897.

https://dx.doi.org/10.1016%2Fj.mayocp.2020.06.028

Lambert, L. (2020, June 10). Fortune. The coronavirus has now killed more Americans than every war since the start of the Korean War—combined.

https://fortune.com/2020/06/10/coronavirus-deaths-us-covid-19-killed-more-americans-korean-war-vietnam-iraq-persian-gulf-combined-how-many-died/

Marik, Paul Ellis. (2015). Evidence-based Critical Care. 3rd ed. Springer International Publishing.

Mertz, D., Lo, C. K.-F., Lytvyn, L., et al. (2019). Pregnancy as a risk factor for severe influenza infection: an individual participant data meta-analysis. BMC Infectious

Diseases, 19(1). https://doi.org/10.1186/s12879-019-4318-3

National Institutes of Health. (2021). Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/

Nopp, S., Moik, F., Jilma, B., Pabinger, I., & Ay, C. (2020). Risk of venous thromboembolism in patients with COVID-19: A systematic review and meta-analysis. Research

and Practice in Thrombosis and Haemostasis, 25(4), 1178-1191. https://doi.org/10.1002/rth2.12439

Seley-Radtke, K. (2020, May 6). *Remdesivir explained – what makes this drug work against viruses?* The Conversation.

https://theconversation.com/remdesivir-explained-what-makes-this-drug-work-against-viruses-137751

Siddiqi, H. K., & Mehra, M. R. (2020). COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal. The Journal of Heart and Lung

Transplantation, 39(5), 405-407. https://doi.org/10.1016/j.healun.2020.03.012

Simpson, S., Kay, F. U., Abbara, S., et al. (2020). Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-

19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. *Radiology: Cardiothoracic Imaging*, 2(2), e200152.

https://doi.org/10.1148/ryct.2020200152

Society for Maternal Fetal Medicine. (2021). Management Considerations for Pregnant Patients With COVID-19.

https://s3.amazonaws.com/cdn.smfm.org/media/2668/SMFM_COVID_Management_of_COVID_pos_preg_patients_1-7-21_(final).pdf

Spinner, C. D., Gottlieb, R. L., Criner, G. J., et al. (2020). Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19. JAMA,

324(11), 1813-1826. https://doi.org/10.1001/jama.2020.16349

United States Food and Drug Administration. (n.d.). Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Bamlanivimab.

https://www.fda.gov/media/143603/download

United States Food and Drug Administration. (n.d.). Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Casirivimab and Imdevimab.

https://www.fda.gov/media/143892/download

World Health Organization Rapid Evidence Appraisal for COVID-19 Therapies, et al. (2020). Association Between Administration of Systemic Corticosteroids and Mortality Among Critically III Patients With COVID-19. *JAMA*, *324*(13), 1330-1341. https://doi.org/10.1001/jama.2020.17023

The RECOVERY Collaborative Group et al. (2020). Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. New England Journal of Medicine.

https://doi.org/10.1056/nejmoa2021436

USCovidPlasma. (n.d.) uscovidplasma.org.

https://www.uscovidplasma.org/-/media/kcms/gbs/patient-consumer/documents/2020/12/17/20/37/map-library-of-congress-participation.pdf

Wang, Y., Zhang, D., Du, G., et al. (2020). Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet,

0(0). https://doi.org/10.1016/S0140-6736(20)31022-9

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA, 323(13).

https://doi.org/10.1001/jama.2020.2648

Zambrano, L. D., et al. (2020). Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy

Status — United States, January 22–October 3, 2020. MMWR. *Morbidity and Mortality Weekly Report, 69*: 1641-1647.

https://doi.org/10.15585/mmwr.mm6944e3

How to Obtain CE/CME Slide

To receive CE/CME credit, you must register by 0745 ET on 26 February 2021 to qualify for the receipt of CE/CME credit or certificate of attendance. You must complete the program posttest and evaluation before collecting your certificate. The posttest and evaluation will be available through 11 March 2021 at 2359 ET. Please complete the following steps to obtain CE/CME credit:

- 1. Go to URL: https://www.dhaj7-cepo.com/content/feb-2021-ccss-emerging-priorities-women's-health
- 2. Click on the REGISTER/TAKE COURSE tab.
 - a. If you have previously used the CEPO CMS, click login.
 - b. If you have not previously used the CEPO CMS click register to create a new account.
- 3. Follow the onscreen prompts to complete the post-activity assessments:
 - a. Read the Accreditation Statement
 - b. Complete the Evaluation
 - c. Take the Posttest
- 4. After completing the posttest at 80% or above, your certificate will be available for print or download.
- 5. You can return to the site at any time in the future to print your certificate and transcripts at <u>https://www.dhaj7-cepo.com/</u>
- 6. If you require further support, please contact us at <u>dha.ncr.j7.mbx.cepo-cms-support@mail.mil</u>